

TENDER DOCUMENTS Electrical Lab Equipment NUTECH / SCM / Electrical Lab Eqpt (PSDP) 2020 / TD-110

NATIONAL UNIVERSITY OF TECHNOLOGY

TENDER NOTICE

National University of Technology (NUTECH)

NUTECH / SCM / Electrical Lab Eqpt (PSDP) 2020 / TD-110

Sealed bids are invited from Government / FBR Registered Firms for the procurement of Electrical Lab Equipment for NUTECH on **CPT Basis**.

1. Tender documents containing terms, conditions and detailed specifications of items (including draft contract) can be downloaded from NUTECH website "<u>https://nutech.edu.pk</u>" w.e.f **17 Jan 2020**.

2. Quotations shall be submitted as per requirement of the tender documents.

3. Bidders will be required to submit **Bank Draft / CDR** equal to **5%** of quoted value as Bid Bond in favor of National University of Technology (NUTECH).

4. Sealed bids with detailed specifications should reach on the following address latest by **1030 hours on 20 Feb 2020.** Late submission will not be entertained.

5. Bids will be opened at **1100 hours** on **20 Feb 2020 at** SCM Office.

6. Project is to be completed in **120 days** from the date of award of contract.

7. Submit Rs 1500/- as Tender fee in favor of NUTECH HBL Account (NUTECH

Tendering and Contracts, 5037-7000210755). Please attach bank receipt with technical offer. Offers will not be entertained without payment of processing fee.

Deputy Director (Supply Chain Management) NATIONAL UNIVERSITY OF TECHNOLOGY, UPROAD, I-12, ISLAMABAD Tel: 0092-51-5476768, Ext: 227

NATIONAL UNIVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT INVITATION TO TENDER

Tender submission time: 1030 hours, 20 Feb 2020

1. NUTECH desires to procure the list of item(s) / Store(s) on <u>CPT</u> basis. as per **Annexure-A**. Interested bidders are requested to send their bids through courier or deliver at NUTECH under "<u>Single Stage – Two Envelopes</u>" (two envelopes placed together in third envelope), marked clearly as "**Technical Offer**" and <u>"Commercial Offer</u>" respectively to the undersigned, latest by or before above mentioned due date.

2. <u>Conditions Governing Contracts.</u> The contract made as result of this IT will be in accordance with the draft contract published on NUTECH University website and other special conditions (Mentioned in this document) that may be added to given contract for the supply of Mechanical Lab Equipment.

- 3. Delivery of Tender. The offer is to be submitted i as under:
 - a. <u>Technical Offer.</u> Please also note that Technical Offer should contain only Annexure-A, special conditions compliance & Annexure B duly filled in (supported with relevant technical literature / details / catalogues etc) and receipt of tender processing fee. Copy of bid bond WITHOUT MENTIONING PRICE should be attached with technical offer as well. Only technical details (literature/brochures/relevant material) without mentioning the financial aspect of the offer in duplicate would be enclosed in an envelope. In technical proposal, all items must have the brand names, model number, manufacturer name, country of origin, manufacturer's warranty including parts with complete specs and brochures. Re-conditioned and re-furbished equipment shall not be acceptable. Following information will be clearly marked on the envelope:

- (1) Technical Offer
- (2) Original Performa Invoice (without price)
- (3) Tender number
- (4) Date/ time of opening
- b. <u>Commercial Offer.</u> Commercial Offer will contain Annexure-C and bid bond (Dully mentioned and placed in separate envelope. The offer indicating the quoted price (<u>IN USD only</u>) in figures as well as in words along would be enclosed in an envelope. Following information will be clearly marked on the envelope.
 - (1) Commercial Offer
 - (2) Original Performa invoice with price
 - (3) Tender number
- c. Both the envelopes i.e. commercial offer and technical offer would be enclosed in yet another properly sealed envelope that will be marked with address of this office only. There should be clear indication that this envelope contains tender documents.
- d. The tender duly sealed will be addressed to the following:-

Deputy Director (Supply Chain Management Office) NATIONAL UNIVERSITY OF TECHNOLOGY (NUTECH) IJ P ROAD, I-12, ISLAMABAD Tel: 0092-51-5476768, Ext: 227

4. **Date and Time For Receipt of Tender.** SCM Office will not accept any excuse of delay occurring in post. Tenders received after the appointed / fixed time will NOT be entertained. The appointed time will, however, fall on next working day in case of closed / forced holiday.

5. <u>Tender opening.</u> The offers shall be opened 30 minutes after submission time. Commercial offers will be opened at later stage if Technical Offer is found acceptable on examination by technical authorities. Date and time for opening of commercial offer shall intimated later. Only legitimate / registered representatives of firm will be allowed to attend tender opening.

6. <u>Validity of Offer.</u> The validity period of quotations must be indicated and should be 90 days from the date of opening of commercial offer. Conversion rate of Foreign Exchange (FE) / Local Currency (LC) components will be considered with effect from opening of commercial offer.

7. **Documents.** Following information's / copy of documents must be provided / attached with offer:-

- a. A copy of letter showing firm's financial capability.
- b. NTN/GST number be mentioned on the offer and copy of registration Certificate issued by Sales Tax Department, attached.
- c. Foreign supplier to provide its Registration Number issued by respective Department of Commerce authorizing export of subject stores.
- d. Annexes A, B and C and special conditions must be signed and stamped. Attach only relevant documents.
- e. Complete all Annexes as per given format. Do not use your format or letter head. Offer may be rejected if given format is not followed.
- f. OEM/principal agency agreement must be provided.
- 8. **Disqualification.** Offers are liable to be rejected if:
 - a. Validity of offer is not quoted as required in IT or made subject to confirmation later.
 - b. There is any deviation from the General/ Special / Technical Instructions.
 - c. Offers are found conditional or incomplete in any respect.
 - d. Tender processing fee (with tech offer) and EM/Bid Bond (with fin offer) are NOT attached.
 - e. Multiple rates are quoted against one item.
 - f. Manufacturer's relevant brochures and technical details on major equipment assemblies are not attached in support of specifications.

- g. Offer received later than appointed / fixed date and time.
- h. Subject to restriction of export license.
- Offers (Commercial / technical) containing non-initialled / unauthenticated amendments / corrections / overwriting. If the validity of the agency agreement has expired. The commercial offer against FOB / CIF / C&F tender quoted in local currency
- j. If the offer is found to be based on cartel action in connivance with other sources/participants of the tender.

9. **Earnest Money / Bid Bond.** Commercial Offer must be accompanied with a Bid Bond (CDR/Pay Order/Bank Draft) in agreement of faithful compliance of the conditions of Contract. This amount will be equivalent to 5% of the total quoted value. The Bid Bond amount submitted by the successful bidder will however be refunded on effective termination of Contract. (The Bid Bond will be forfeited in case of default by the bidder from his commitments made through his offer). Submission of Bid Bond is mandatory; otherwise your offer will be rejected. Bid Bond will be used as performance guarantee till the delivery of stores, otherwise separate performance guarantee valued at 5 % of contract will be submitted by successful firm till stores are delivered and inspected.

10. Return of Earnest Money/Bid Bond.

- Bid Bond to the unsuccessful bidders will be returned on finalization of the contract.
- b. Bid Bond of the successful bidder/bidders will be returned on submission of Bank Guarantee against warranty period OR Bid bond retained for the warranty period as the case maybe.

11. <u>Terms of Payment/ LC Charges</u> In case of CPT/FOB (all categories) contracts payment will be made through letter of credit (LC). LC opening charges in Pakistan are to be borne by NUTECH. Payment will be made through irrevocable LC in favour of Manufacturer. Payment will be in USD.

12. **Bank Guarantee (BG)**. In case where equipment is backed by warranty, the BG submitted equal to 05% of FOB/FOR/CPT etc value shall remain valid for up to 60 days after completion of warranty period.

13. **Insurance:** Insurance will be NUTECH's responsibility through NICL.

14. <u>Freight charges /Custom clearance:</u> Custom clearance and all freight related will be supplier's responsibility. NUTECH will provide applicable exemption certificates and documents. Delivery till NUTECH will be firm's responsibility and all associated costs will be part of quotation as well.

15. <u>Warranty</u>. All goods /store offered would be brand new, from current year of production and will be governed as per warranty clause. The warranty period may be covered by a BG as stipulated above depending on the value /criticality of the tender equipment /stores.

16. **Delivery Schedule.** Store will be delivered within 120 days from contract signing date.

17. **Force Majeure.** If non-compliance with the period of delivery or services can be proved to be due to Force Majeure, such as but not limited to mobilization, war, riot, strike, lockout or the occurrence of unforeseen events, the period shall be reasonably extended.

18. **<u>Subletting</u>** Supplier is not allowed to sublet wholly or part of the contract to any other firm /company without prior permission of the purchaser's .Firm found in breach of the clause will be dealt with as per purchaser's right and discretion

19. <u>Arbitration.</u> The dispute shall referred for adjudication to a board comprising of Rector NUTECH and two arbitrators, one to be nominated by each party who before entering upon the reference shall appoint an umpire by mutual agreement, and if they do not agree a judge of the Superior court will be requested to appoint the umpire. The arbitration proceeding shall be held in Pakistan under Pakistan Law. The venue of arbitration shall be the place from which the contract is issued or such other place as the purchaser at his discretion may determine. Arbitration award so given will be firm and final

20. <u>Export License/Permit /End User Cert.</u> It shall be the responsibility of the Supplier to obtain from the Government concerned all permits and export licenses, etc required to enable each consignment to be shipped immediately as per the delivery schedule. In case the supplier fails to arrange export license within 30 days of signing the contract the purchaser reserves the right to cancel the contract on the risk and expense of the supplier without prior notice. The purchaser will provide End User

Certificate for the purpose of getting the export licenses/permit on behalf of the supplier for the export of the Contracted good /stores.

21. <u>Technical Specification:</u> The supplier will provide OEM certificate, quality certificate /inspection document to the purchaser confirming the quality of the product being supplied under this contract. Store must bear the manufacturer's identification marking /monogram.

22. <u>Inspection /Testing of Store</u>: Inspection testing will be carried out at NUTECH by the concerned inspection team /inspector as detailed by the technical authority of respective department on behalf of the NUTECH in accordance with the laid down Acceptance Criteria .(Acceptance Test Procedure (ATPs)/Drawing /Test standard AND SPECIFICATION). The supplier will provide ATPs with technical offer. Mutually agreed/approved ATPs will form part of contract to govern the inspection of store subsequently

23. **<u>Requirement of Samples.</u>** The requirement of tender sample will be included in the case if required for evaluation by technical authorities' .Beside this advance sample if required will be also made part of the IT as well as the contract.

24. <u>Change In Specification /Mfr/Model.</u> No alternation marked/brand and quality of store will be entertained after the tender have been opened.

25. <u>Checking of Store at Consignee End.</u> All stores will be checked at Consignee's end in the presence of the supplier's representative. If for some reason, the supplier decides not to nominate his representative for such checking, an advance written notice to this effect will be given by the supplier to the consignee prior to or immediately on shipment of store .In such an event the supplier will clearly undertake that decision of consignee with regard to quantities and description of consignment will be taken as final and discrepancy found will be according made up by supplier. In all other cases the consignee will inform the supplier about arrival of consignment immediately on receipt of store through registered email/letter and telephone .If no response from the supplier is received within 15 days from initiation of letter the consignee will have the right to proceed with the checking without supplier's representative .Consignee's report on checking of the stores will be binding on the supplier in such cases.

26. **Packing /Marking.** The supplier shall be responsible for proper packing of the Store in standard export packing worthy of transportation by sea /air /road rail so as to ensure their content being free from lose or damages due to faulty packing on arrival at the ultimate destination. Packing of stores will be done at the expenses of the supplier. All packing cases, containers and other packing material shall become the property of the NUTECH on receipt. Marking of packages /instruction will render the store liable to reject .Any loss occurred /demurrage paid due to wrong marking will be make good by the supplier

27. **Original Performa Invoice**: Please ensure Original Performa invoice has fol components incorporated:-

- a. HS Code
- b. Incoterm
- c. Payment Terms
- d. Origin of good
- e. Port of shipment
- f. Port of departure
- g. Seller & Buyer acceptance (on Performa Invoice)
- h. Invoice Date
- i. Latest date of shipment
- j. Seller complete bank detail
- 28. General Instructions: Following must be noted:-
 - The firm should provide point to point acceptance of each clause of IT and special instructions attached with IT.
 - Firm will render a certificate on stamp paper with technical offer that firm is neither defaulter nor blacklisted by any Government / semi Government organization directly or indirectly.
 - c. Rates should be quoted on Free Delivery basis at NUTECH Islamabad.
 - d. **2 years** warranty against **5% Bank Guarantee** of the store value will be required from the successful bidders from the date of commissioning as performance bond.
 - e. The stipulated delivery period should be strictly adhered to. Any anticipated delay that is beyond the control of Seller will be informed

(in writing) well in advance of the expiry of the due date of the activity along with reasons thereof, requesting for the grant of extension in delivery period. If the Seller fails to do so, or the Buyer is not convinced with the rationale provided by the Seller, Liquidated Damages up to/at 2% per month or part thereof, will be imposed. However, the maximum limit of the Liquidated Damages will not exceed 10% of the contract value, in any way.

- f. If even after applicability of 10% LD, the Seller fails to deliver the required stores, the Buyer will be at liberty to Cancel the contract, and /or procure the stores from an alternate source, on the Seller's "Risk & Cost/Expense". In that case, the Seller will be bound to make payment to the new source through NUTECH. The purchaser's decision under this clause shall NOT be subjected to arbitration.
- g. .NUTECH reserves the right to cancel the Contract without assigning any reason whatsoever during its currency / execution / after placement, if the firm is found to be involved in any dubious activity, litigation, lacking to meet contractual obligations with the purchaser or is blacklisted with any other Public procurement agency. No claims / loss /damage of whatsoever nature shall be entertained and NUTECH's decision in this regard will be final and binding on the Supplier / Seller.
- h. An appropriate amount may be paid for mobilization against Bank Guarantee/CDR/Demand Draft/Pay Order.
- i. Firms with previous pending business with NUTECH may not be considered for award of this tender

Deputy Director Supply Chain Management Office

Page **11** of **81**

<u>Annex-A</u>

Technical Specifications

NUTECH / SCM / Electrical Lab Eqpt (PSDP) 2020 / TD-110

Ser	Part No	Items	Description	A/U	Country of	Qty Req Bidder Compliance			pliance
					Origin		Yes	No	Alternate
1.		Electrical Machines Trainer	Electrical Machine Trainer comprising the following modules as per quantity mentioned against each: (a) Complete Electrical Machines Training Systems (Qty-3) (b) Open Lab Electrical Machines Training Systems (Qty-2) Total Qty (Req) = 3+2= 5	No	Europea n/ USA	5 (3+2)			
	а	Module (a)	Complete Electrical Machines Training Systems with following Equipment						
	a(i)	Motor Driven Power Supply	 Motor Driven General Purpose Power Supply (Programmable) Suitable for fixed/Variable ac and dc current. Emergency Mushroom head. Over speeds Protection. Variable ac: 3x0÷380V, 2A & 3x0÷240V, 3A Fixed ac: 3x380V +N, 10A, 3x220V, 3A Variable dc: 0÷240V, 4A, 0÷225V, 1A Fixed dc: 220V, 4A Power Supply: 3x380V+N, 50/60Hz 						

o/ii)	DC Machinas	DC Machines 1.				
a(11)	DC Wathines	DC Machines-1.				
		Direct Current Generator				
		Series, Shunt and Compound Excitation				
		It can be used as a motor 2800 r.p.m. Voltage:				
		220V Current: 1.18A				
		Excitation: 190V/0.1A				
		DC Machines-2:				
		Direct Current Motor				
		Series, Shunt and Compound Excitation				
		It can be used as a Generator				
		Power: 260W Speed: 2800 r n m				
		Voltage: $220V$ Current: 1 18A				
		Excitation: $1001/(0.1 \text{ A})$				
2(iii)	Three Phase AC	Three Phase AC Meters-1:				
a(III)	Motors	Squirrel Cage Three Phase Acynehroneus				
	WOORS	Squirrei Cage Three-Phase Asynchronous				
		Power: 370W. Speed: 2650 r.p.m. (50Hz),				
		Connections: Star/triangle.				
		Voltage: 220/380V Δ/Y				
		Current: $2/1.1A \Delta/Y$.				
		Three Phase AC Motors-2:				
		Three- Phase Wound Rotor Asynchronous				
		Motor				
		Power: 370W. Speed: 2650 r.p.m. (50Hz),				
		Connections: Star/triangle. Voltage:				
		220/380V Δ/Y				
		Current: $2/1.1A \Delta/Y$.				
a(iv)	Single Phase AC	Single Phase AC Motors-1:				
	Motors	Capacitor Motor				
		Power: 370W				
		Speed: 2720 r.p.m. Frequency: 50Hz				
		Voltage: 220 V Current: 3A				
		Single Phase AC Motors-2				
		Universal Motor				
1				1	1	

		Speed: 3000 r.p.m. Frequency: 50Hz.			
		Voltage: 220 Vac/220Vdc.			
		Current: 3.5Aac/3Adc			
		Single Phase AC Motors-2:			
		Repulsion Motor			
		Speed: 3000 r.p.m. Frequency: 50Hz.			
		Voltage: 220 Vac/220Vdc.			
		Current: 3.5Aac/3Adc			
a(v)	Single Phase	Single Phase Transformer			
	Transformer	Corer type transformer with split windings.			
		Power Rated: 300VA			
		Primary Voltage: 127/220/380V			
		Secondary Voltage: 2 x 110V			
		It is also used as an Auto-Transformer			
a(vi)	Three Phase	Three Phase Transformer:			
	Transformer	Column-type transformer with split windings.			
		Power Rated: 300VA			
		Primary Voltage: 2 x 110V (Phase)			
		Secondary Voltage: 2 x 110V (Phase)			
 		It is also used as a Single-Phase Transformer			
a(vii)	Measuring	Electrical Power Digital Measurement Unit:			
	Modules	DC Voltage: 500V			
		AC Voltage: 500V			
		DC Current: 9.9A			
		AC Current: 9.9A			
		Power: 600W			
		Mechanical Power Digital Measurement Unit:			
		Torque: $0 \div 1.999$ Nm; Speed: 6000 rpm			
		Dc Output: $0 \div 220V$, 0.6A			
 - (!!!)		Power Supply: 220V, 50/60Hz			
a(viii)	Load Cell				
		Resistance electronic strain-gauge 150N			

			Range, to be mounted on the braking system to			
l			measure the mechanical torque.			
	a(ix)	Braking	Eddy-Current Brake			
		Assemblies:	(Electromagnetic Brake)			
			Smooth roll and salient pole stator			
			Speed: 5000 rpm			
			Power: 450W Power Supply: 250Vdc			
	a(x)	Power Supply for	Power Supply for Breaking Systems:			
		Break	Output: 0÷120V, 2 A or 0÷220V, 1 A.			
			Power supply: single-phase from mains			
l	a(xi)	Universal Base	Universal Base for Motors:			
l			Anti-vibration rubber feet, fixing of two machines			
l			and with coupling guard and locking of the rotor			
			of the slip-ring			
			Asynchronous machines.			
l	a(xii)	Connecting	Connected Leads			
	6	Leads				
	a(xiii)	Loads and	Capacitive Load:			
		Accessories	Single Phase or Three Phases Capacitive step-			
			variable Load			
			Power: 3 x 105VAr			
l			Voltage: 220/380V Δ/Y.			
ľ			Single Phase or Three Phase Capacitive step-			
			Variable Load			
			Power: 3 X TUUVAr			
			Voltage: 220/380V Δ/Y			
			<u>Resistive Load:</u> Single Dhase or Three Dhase Consolitive stop			
ľ			Single Phase of Three Phase Capacitive step-			
			Power: 2 x 110W			
l			Voltage: 220/380V/ A/V			
	a(viv)	Accessories	Starting Rheostat			
	α(ΛΙΥ)	70003301103	Excitation Rheostat			
			Star/Delta Starter			
	a(xiv)	Accessories	Single Phase or Three Phase Capacitive step- variable Load Power: 3×100 VAr Voltage: 220/380V Δ /Y Resistive Load: Single Phase or Three Phase Capacitive step- variable Load Power: 3×110 W Voltage: 220/380V Δ /Y. Starting Rheostat, Excitation Rheostat, Star/Delta Starter,			

		Pole Switching Unit,			
		Other accessories which will be useful in trainer			
b	Module (b)	Open Lab Electrical Machines Training			
		Systems with following Equipments			
b(i)	SET OF	It includes the following components:			
	COMPONENTS	Base plate			
		Supports with bearing			
		Coupling joints			
		Flexible coupling			
		Electronic speed transducer			
		Assembling screws			
		Wrenches			
		DC stator			
		AC stator			
		Rotor with commutator			
		Brush holder with 2 brushes			
		Cage rotor			
		Ring rotor			
		Brush holder with 6 brushes			
		below			
		This system is a complete set of components and			
		modules suitable for assembling the rotating			
		electric machines, both for direct current and for			
		alternating current			
		Resides a magnetic probe is foreseen to display			
		the magnetic fields and a transparent covering.			
		for safety reasons, prevent students from the			
		accidental contact with the rotating parts.			
		The AC STATOR is composed of a metal frame			
		supporting the laminated magnetic circuit,			
		because interested by a flux variable in time, and			
		the electrical winding. The sheet iron pack is 60			
		mm long, with internal diameter of 80 mm and			
		external one of 150 mm and it presents 24 half-			

					_
	closed slots inside of which there is a double				
	three-phase winding: the beginnings and the				
	ends of the different phases are shown outside				
	the stator on a suitable educational terminal				
	board. The winding is a double layer one of the				
	long coil lap type, with winding span 6 (1÷7).				
	Every slot contains two coils of 19 turns each of				
	enameled wire of diameter 1.12 mm.				
	The SQUIRREL CAGE ROTOR is composed of				
	a shaft to which a pack of magnetic sheet irons is				
	fixed, where the slots suitable to contain the rotor				
	winding are set. The sheet iron pack is 60 mm				
	long, with external diameter of about 78 mm. To				
	avoid the phenomenon of the motor crawling in				
	starting phase and to reduce the noise, the slots				
	are inclined as regards the stator ones. The rotor				
	winding is composed of the squirrel cage. The				
	cage is carried out by setting in every rotor slot				
	some conducting bars that are closed in short-				
	circuit at both ends by means of some				
	conducting rings. The rotor winding can be				
	therefore considered a multi-phase winding, with				
	a single conductor for pole- phase, so it does not				
	present its proper pole number but it assumes				
	one that is equal to the stator winding one.				
	The RING ROTOR is composed of a shaft to				
	which the collector rings and a magnetic sheet				
	iron pack are fixed: the iron pack has 21 semi-				
	closed slots suitable to contain the winding. The				
	sheet iron pack is 60 mm long, with external				
	diameter of about 78 mm. To avoid a noisy				
	mechanical running the rotor slots are inclined as				
	regards the stator ones. The rotor winding is				
	composed of coils and it is two pole three-phase.				
	The winding is a double layer one of the long coil				

	lap type, with winding span 9 (1-10). Every slot			
	contains two coils of 8 turns each of enameled			
	wire of diameter 1.5 mm. The winding is star			
	connected and it is subordinate to the collector			
	rings while the star centre is internal and not			
	accessible. The terminals of the rotor winding are			
	accessible by means of the collector rings on			
	which the bushes supported by a brush holder			
	graze. The brushes are two for each phase and			
	they are subordinate to an external terminal			
	board that shows the synoptic of the rotor			
	winding.			
	The DC STATOR is composed of a metal frame			
	supporting the laminated magnetic circuit, with 2			
	main poles and 2 inter poles, and the electrical			
	windings. The sheet iron pack is 60 mm long,			
	with internal diameter of 80 mm. On the poles the			
	coils are wound whose terminals are shown on a			
	suitable educational terminal board.			
	The DC ROTOR is composed of a shaft to which			
	the segment commutator is fixed and of a			
	magnetic sheet iron pack where 20 semi-closed			
	slots suitable to contain the electrical winding are			
	set. The sheet iron pack is 60 mm long, with			
	external diameter of about 80 mm. The winding is			
	a double layer one of the long coil lap type, with			
	winding span 9 (1÷10). Every slot contains two			
	coils with two sections of 5+5 turns carried out			
	with enameled wire of diameter 1.12 mm. The			
	winding is subordinate to the 40 segments of the			
	commutator on which two brushes are supported			
	by a brush holder graze. The brushes are			
	subordinate to terminals set on two external			
	boards that show the synoptic of the rotor			
	winding.			

b(ii)	POWER	POWER SUPPLY Outputs in ac:			
	SUPPLY	 Three-phase: 24 V/14 A, 42V/10A 			
		 Single-phase: 0 – 48 V/5 A, 0 – 10 V/12A 			
		Outputs in dc:			
		• 32 V/14 A, 42 V/10 A, 0 – 40 V/5 A, 0 – 8 V/12			
		A Three-phase power supply from mains.			
		Complete with over-speed protection			
b(iii)	ELECTRIC AND	Power supply: 100-240 Vac 50/60 Hz			
	SPEED	 Vac/Vdc measurement range: 0-65V 			
	MEASUREMENT	 lac/ldc measurement range: 0-20A 			
		• Speed measurement range: 0- 4000 rpm at			
		50Hz			
		• 0-6000 rpm at 60Hz Communication: Modbus			
		RTU RS485			
		 Encoder resolution: 5 pulses / revolution 			
b(iv)	LOADS AND	resistors:			
	RHEOSTAT	• 3x15 Ohm, 90 W each, 1 Ohm + (0 - 2 Ohm),			
		80 W capacitors: 3 x 80 μF, 150 V			
		 rheostat: 0 - 80 Ohm, 1 A 			
b(v)	ADAPTER	Necessary for connecting the locking device, the			
	BRACKET	brake or the drive motor.			
b(vi)	LOCKING AND	Suitable for locking and rotating the rotor of slip-			
. ,	ROTATING	ring induction motors to obtain an induction			
		regulator and phase transformer			
b(vii)	POLE	Switch to change the number of poles on motors.			
	CHANGING				
b(viii)	PARALLEL	Rotating light synchronoscope to perform the			
,	BOARD	parallel connection between synchronous			
		generators or between the alternator and the			
		mains.			
b(ix)	ELECTROMAGN	Smooth roll rotor and salient pole stator			
	ETIC	For three-phase squirrel cage induction motors.			

	BRAKE&STAR/D ELTA STARTER				
b(x)	STARTING AND SYNCHRONIZATI ON	Rotor starter for three-phase slip ring motors and excitation device for synchronization with the mains.			
b(xi)	FAULT SIMULATORS	Set of 4 masks to insert simulated faults in the machines of the OPENLAB system. The set includes: • FAULT SIMULATOR FOR A THREE-PHASE CAGE MOTOR - Short-circuit between two phases - Break-up of a stator phase - Break-up of two phases - Internal short-circuit • FAULT SIMULATOR FOR A SLIP RING MOTOR - Short-circuit between two phases - Break-up of a stator phase - Internal short- circuit • FAULT SIMULATOR FOR A SINGLE-PHASE CAPACITOR MOTOR - Unsuccessful starting of the motor • FAULT SIMULATOR FOR A COMPOUND EXCITED DC MOTOR - Unsuccessful starting of the motor - Break-up of a stator phase - Shunt excitation circuit reversal			
b(xii)	Accessories	Starting Rheostat, Excitation Rheostat, Star/Delta Starter, Pole Switching Unit, Other accessories which will be useful in trainer			
		Experimental Capabilities Flux produced by the poles Main magnetic field Intensity of the magnetic field Induced voltage Inter pole effect			

	No lood magnatic neutral avia			
	Rotating magnetic field			
	3-phase squirrel cage motor, 2 poles, 24 V Δ			
	3-phase squirrel cage motor, 2 poles, 42 VY			
	3-phase squirrel cage motor, 2 poles, 24 V $\Delta\Delta$			
	3-phase squirrel cage motor, 2 poles, 42 VYY			
	3-phase squirrel cage motor, 4 poles, 24 V Δ			
	3-phase squirrel cage motor, 4 poles, 42 VY			
	3-phase motor, 4/2 poles, 42 VΔ/YY			
	Split phase motor			
	Capacitor start and run motor			
	3-phase motor with wound rotor, 2 poles, 42 VYY			
	Phase shifter			
	Induction regulator			
	3-phase synchronous induction motor, 2 poles,			
	24 VΔ			
	3-phase synchronous induction motor, 2 poles,			
	24 VΔΔ			
	DC motor with separate excitation			
	DC motor with shunt excitation			
	DC motor with series excitation			
	DC motor with compound excitation, long shunt			
	DC motor with compound excitation, short shunt			
	Single phase series motor			
	Repulsion motor			
	Synchronous motor winding resistance			
	Synchronous motor no-load test			
	Synchronous motor short-circuit characteristics			
	Synchronous motor short-circuit test			
	Synchronous motor Behn-Eschenberg's method			
	Synchronous motor load test			
	Synchronous motor conventional efficiency			
	Parallel connection of the alternator with the			
	mains			
	Alternator as synchronous motor			

	DC generator winding resistance			
	DC generator test of the no-load motor			
	(Swinburne)			
	DC generator no-load e.m.f.			
	DC generator excitation characteristics			
	Separate excitation dynamo			
	Shunt excitation dynamo			
	Series excitation dynamo			
	Compound excitation dynamo			

2.	Power	Selenium rectifier Qty. 1(per unit set)	No	Europea	2		
	Electronics	Rated alternated voltage: 30 Vrms		n/ USA			
	Trainer	Rated continuous voltage: 24 Vav					
	(Complete	Rated continuous current: 10 Aav					
	Package)	Silicon diode Qty. 4(per unit)					
		Direct average current: IFAV = 12 A max.					
		Direct non repetitive overload current:					
		IFSM = 75 A (tp = 10 ms)					
		Repetitive peak reverse voltage: URRM = 1000 V					
		Recovery reverse time: trr = 65 ns max.					
		Group of diodes Qty. 1(per unit)					
		Six fast acting silicon diodes with RCD protection					
		network suitable for realizing non-controlled					
		Direct everage eurrent: IEAV 12.4					
		Direct average current. $IFAV = 12 A$					
		IFSM = 75 A (tr = 10 ms)					
		Repetitive peak reverse voltage: LIRRM – 1000 V					
		Recovery reverse time: $trr = 65 \text{ ns max}$					
		SCR Qtv. 1(per unit)					
		Direct average current: ITAV = 7.6 A max.					
		True RMS value of the direct current: ITRMS =					
		12 A					
		Max. repetitive reverse voltage: URRM = 800 V					
		Trigger current: IGT = 15 mA max.					
		Trigger voltage:					
		Group of SCR Qty. 2(per unit)					
		Six silicon controlled rectifiers with RCD					
		protection					
		network used for realizing controlled rectifiers					
		and inverters.					
		Direct average current: $IIAV = 7.6 A max$.					
		True KIVIS value of the direct current: IT KIVIS =					
		12 A Max repetitive reverse veltages UDDM _ 000 V					
		iviax. repetitive reverse voltage: UKKIVI = 800 V					

Trigger current: IGT = 15 mA max.		
Trigger voltage: UGT = 1.5 V max.		
12t = 72 A2s		
Triac Qtv. 1(per unit)		
Bidirectional thyristor used for the control in		
alternated		
current Complete with RC suppressor network		
True RMS value of the direct current: $ITAV = 8 A$		
max		
Non-repetitive peak current:		
TSM = 70 A 50 Hz (77 A 60 Hz)		
Max repetitive reverse voltage: LIDRM – 800 V		
Trigger current: $IGT = 25 \text{ mA max}$ (all the		
quadrants)		
Trigger voltage: LIGT = 25 V max		
State keeping current:		
H = 25 mA max		
12t = 24 A2s		
MOSEET Qtv 1(per unit)		
N-channel enhancement mode power MOS with		
integrated reverse diode (ERED, East Recovery		
Epitaxial		
Diode) used as very fast switch in switching		
regulators and inverters		
Drain-source voltage: UDS = 400 V		
Continuous drain current: $ID = 10 A$		
Drain-source on-state resistance: RDS(on) =		
Gate-source voltage: UGS = +-20 V		
IGBT Qtv. 2(per unit)		
N-channel Insulated Gate Bipolar Transistor		
(IGBT) with		
anti parallel hyper fast protection diode used as		
verv		

fast switch in switching regulators and invertors			
Collector amitter voltage: LICES _ 600 V			
Continuous collector surrent lo 24.4 st T = 2500			
Continuous collector current: IC=24 A at IC=25°C			
Collector-emitter saturation voltage:			
UCEsat = 1.8 Vtyp at Ic=15 A			
Gate-emitter voltage: UGE = ± 20 V			
Group of IGBT Qty. 1(per unit)			
4 N-channel Insulated Gate Bipolar Transistors			
(IGBT) with anti parallel hyper			
fast protection diode used as very fast switches			
in switching regulators and inverters.			
Collector-emitter voltage: UCES = 600 V			
Continuous collector current: Ic = 24 A at Tc =			
25°C			
Collector-emitter saturation voltage:			
UCEsat = 1.8 Vtvp at Ic=15 A			
Gate-emitter voltage: LIGE = ± 20 V			
Bridge three phase rectifier Qtv 1(per unit)			
Non-controlled three-phase rectifier in six pulse			
bridge connection			
B6UK for the generation of a DC voltage from a			
three phase mains			
IIII = plase IIIallis.			
Direct output voltage: $I d = 540 V$			
Direct output voltage. $Ou = 540$ v			
Rated direct current. IdN = 10 A			
FSW = 300 A			
$I_{2l} = 400 \text{ A}_{2S}$			
Voltage drop: $UF = 1$ V per diode			
SCR with turn off circuit Qty. 1(per unit)			
Main SCR and auxiliary SCR, complete with RC			
uppressor circuit.			
Direct average current: ITAV = 13 A max.			
Max. repetitive reverse voltage:			
UDRM = 800 V tq = 35 ms			

	Block diodes and flywheel, complete with RC			
	suppressor circuit.			
	Max. repetitive reverse voltage: UDRM = 600 V			
	IAV = 8 A			
	Turn off capacitor: $C = 2 \mu F$			
	Oscillation coil: $L = 1 \text{ mH}$			
	Shunt for the measurement of the currents in			
	each branch: $4 \times 0.1 \Omega$			
	DC Power Supply Qty. 1(per unit)			
	Laboratory power supply with two fixed voltage			
	outputs			
	and protected against short-circuit.			
	Output voltages: +15 V ; 0 V ; -15 V			
	Output current: 2,4 A (3 A for a short period)			
	Power supply: single-phase from mains			
	Two led (+15 V ; -15 V) for the indication of the			
	nominal voltage.			
	Mains switch with pilot lamp			
	Voltage Reference Generator Qty. 1(per unit)			
	Power supply: +15 V ; 0 V ; -15 V			
	Range of the continuous regulation reference			
	signal:			
	from - 10 V to + 10 V, from 0 to + 10 V			
	Range of the step reference signal:			
	from - 10 V to + 10 V, from 0 to + 10 V			
	Switch for selecting between internal			
	potentiometer			
	reference signal and external reference signal			
	Switch for selecting between the 0 / ±10 V range			
	and the 07+10 V range			
	I rigger point limiter Qty. 1(per unit)			
	Stability limit for rectifier: U° to 180°			
	Stability limit for inverter: 180° to 0°			
	Power supply: $+15 \vee / 0 \vee / -15 \vee$			
	i wo pulse control unit Qty. 1(per unit)			

	Power supply: +15V/ 0V / - 15V (25mA)			
	Synchronization voltage: 1 to 440 V			
	Control voltage Uc: 0 V to 10 V			
	Trigger angle: 180° to 0°			
	Number of outputs: 2 x 2			
	Possibility of pulse train or single pulse.			
	Possibility of selecting two natural switching			
	points: 0° and 30°.			
	Inhibit voltage:			
	UINH = 15 V (open); trigger pulses.			
	UINH = 0 V; no trigger pulses.			
	Six pulse control unit Qtv. 1(per unit)			
	Power supply: +15V/0V/- 15V (300mA)			
	Synchronization voltage: 1 to 440 V			
	Analogue control voltage Uc: 0 to 10V			
	Digital TTL control: DWH = FHFFH			
	(15255)10			
	Trigger angle: 180° to 0°(300°120°/60°240°)			
	Number of outputs: 3 x 2			
	Possibility of pulse train or single pulse.			
	Possibility of excluding the secondary pulse.			
	Possibility of selecting three natural switching			
	points: 0°, 30° and 60°.			
	Inhibit voltage:			
	UINH = 15 V (open): trigger pulses.			
	UINH = 0 V: no trigger pulses			
	PWM, PFM, TPC control unit Qty. 1(per unit)			
	Power supply: +15V/0V/- 15V (600 mA)			
	Control voltage: Uc: 0 to 10V			
	PWM: 20-200 Hz/0.2-2 kHz/2-20 kHz			
	Duty cycle D = $ton/T = 0.0.95$			
	PFM: 5-50 ms/50-500 ms/0.5-5 s			
	Frequency: 20 Hz to 20 kHz			
	TPC: Hysteresis: UH = 0 to 2 V			

Number of outputs: 2 x 2, with led indication of		
the status		
Output amplifier: threshold voltage 5 V, short-		
circuit proof		
Inhibit voltage:		
UINH = 15 V (open): trigger pulses.		
UINH = 0 V: longer pulses at certain outputs		
only.		
Run-up control unit Qty. 1(per unit)		
Power supply: -15 V/0 V/ 15 V		
Input signal range: Ui = -10 V 10 V		
Fine adjustment of the slew-rate:		
0.5 50 V/s		
Fine adjustment of the voltage gain: 0.1 1		
Inhibit voltage: UINH = 0 V: zero output voltage		
U0 and output UINH = 15 V		
UINH = 15 V (open): output voltage U0 runs up		
and output UINH =0 V		
PID Controller Qty. 1(per unit)		
Standard industrial controller that can be used as		
P, PI, PD or PID		
controller in the closed loop automatic control		
systems.		
Power supply: +15 V ; 0 V ; -15 V		
Input summing node for two different reference		
variables UR and		
UC and for one controlled variable UA.		
Signal voltage range: -10V +10V		
Parameters of the controller continuously		
adjustable		
Proportional gain: $Kp = 0 \dots 1000$		
Time of the integral action: II = 1ms 100s		
I lime of the derivative action: $TD = 0.2ms \dots 20s$		
Reset input of the integral controller.		

	Output summing node to add or subtract noise				
	variables				
	Measurement terminal for the error signal.				
	Adjustment screw for the output offset				
	Three led indicator of the sense of deviation				
	Coarse and fine adjustment of the proportional				
	cain Kn of the				
	time of the integral action TL and of the time of				
	the derivative action TD				
	Indicator of over-range: led "over" on when the				
	output voltage is higher than 10 V or lower than -				
	10 V.				
	Input loff for resetting the I controller.				
	Absolute value generator Qtv. 1(per unit)				
	Power supply: -15 V/0 V/+15 V				
	Input signal range Ui: -10 V + 10 V				
	Adjustable gain: 0 1				
	Inverting control input:				
	UINV = 0 V: the input signal is inverted				
	UINV = 15 V or disconnected: the input signal is				
	not inverted				
	Inhibit voltage:				
	UINH = 0 V: the output signal is zero				
	UINH = 15 V (open): the absolute value circuit is				
	active				
	Adaptive PI controller Qty. 1(per unit)				
	Double compact PI controller for use as current				
	controller in dc servo drives.				
	Power supply: -15 V/0 V/+15 V				
	Input summing point for two different reference				
	variables UR				
	and UC and one controlled variable UA.				
	Signal voltage range: -10 V + 10 V				
	Continuously adjustable parameters of the two				
	controllers:				

	1					-
proportional gain Kp = 0 1000						
integral action time TI = 0.2 ms 20 s						
Integral element reset by switch or via external						
signal						
Begulator selection by switch or via external						
Signal.						
Gain and Offset Adjust Qty. 1(per unit)						
Power supply: +15 V ; 0 V ; -15 V						
Voltage interval of the input signal: -50 V,, +50						
V						
Adjustable level through the setting of the gain: 0						
1, 0 10, 0 100						
Attenuation of the pulse signals.						
Time constants: 0.1 10 ms : 10 100 ms						
Offset voltages that can be connected: -10 V						
+10 V						
Coarse setting through rotary switches						
Potentiometer fine setting						
Mains transformers Oty 1/per unit)						
Three phase transformer able to supply single						
Thee-phase transformer able to supply single						
and three phase voltages						
as well as a rectified voltage for the excitation of						
the dc machines.						
Three pilot lamps for signaling the mains voltage.						
AC output through isolation transformer: 3 x 90						
V/1.5 A with 3 intermediate sockets at 45 Vac.						
DC output, non isolated from mains: 1 x 220 V/1						
A, switch with pilot lamp and magneto-thermal						
protection 1 A						
Capacitors Qty. 1(per unit)						
Two electrolytic high performance capacitors						
Rated value: 2 x 1000 µF						
Rated voltage: 385 V						
Protection against polarity inversion						
Discharge resistance: 330 kO $(t - 330 c)$						
[Discharge resistance. Job K22 (r = JJU S)	1	1	1	1	1	

Super-fast fuses Qty. 2(per unit)		
Nominal voltage: 660 Vac		
Nominal current: 3 x 6.3 A and 3 x 10 A		
Switching transformer Qty. 1(per unit)		
Ferrite core N27 without air gap.		
Primary: 2 x 115 V, 2 x 48 turns		
Thermal protection: 2 x 0.6 A		
Secondary: 2 x 15 V/ 4.5 A, 2 x 7 turns		
Inter-winding shield. Rated power: 135 VA Rated		
frequency: 15 kHz		
Current transformer Qty. 1(per unit)		
For potential-free measurements of ac currents in		
single and three-phase without neutral.		
Current: 10 A		
Unsmoothed output voltage for synchronization.		
Smoothed output voltage for current regulator.		
Transformation ratio: 2 V / 1 A and Insulation		
voltage: 3 kV		
Trigger pulse switch Qty. 1(per unit)		
For switching the trigger pulses from the control		
unit to double converters in 4-quadrant systems.		
Two pulse inputs and Two control inputs.		
Eight electrically isolated pulse outputs and		
Power supply: +15 V		
Switching logic Qty. 1(per unit)		
Input Xn for torque comparator (speed set point		
value).		
Input Xi for current comparator with adjustable		
limit threshold.		
Output SA and SB for the corresponding inputs		
of the		
trigger pulse switch with led indication of the		
active converter.		
Output INV for the corresponding inverting input		
of the absolute value generator.		

	-			
	Output INH for the corresponding inhibit input of			
	the two pulse control unit, with adjustable delay			
	time from 10 ms to 2 s and led indication of the			
	commutating time.			
	Current comparator output C for EXT selection			
	input of the active elements of the adaptive PI			
	controller.			
	Power supply: +15 V/0 V/-15 V			
	Function generator Qtv. 1(per unit)			
	Functions: sine / triangle / square wave / square			
	wave with variable duty cycle.			
	Frequency range: 10 Hz 100 kHz in 4			
	decades.			
	Output voltage: 0 V to 20 Vpp adjustable			
	Two additional outputs with attenuator: $-20 \text{ dB}/-$			
	40 dB			
	TTL output for triagering. VCO input. AC coupled.			
	Power supply: single-phase from mains			
	Voltage divider 20:1 Qtv. 1(per unit)			
	Electronic voltage divider used as an interface			
	between the dc machines (200 V) and the			
	automatic control circuits (-10 V+15 V).			
	Possibility of capacitive filter with time constant			
	0.1 s.			
	Protection against over voltages up to 1000 Vdc.			
	Power supply: +15 V / 0 V / - 15 V			
	Universal Load Qty. 1 (per unit)			
	Ohmic, inductive and capacitive load suitable for			
	the experiments in the power electronics			
	laboratory.			
	a) Load resistors: 3 x 100 $\Omega/1$ A and Protection			
	with fuses: 3 x T1.25 A			
	Possibility of connecting in series (300 Ω), in			
	parallel (33.33 Ω) or in star and delta			
	b) Load inductors: 2 x (12.5 - 50) mH/2.5 A			

	Possibility of connecting in series (100 mH) and			
	in parallel (6.25 mH)			
	c) Load capacitors: 1_{-8} 16 μ E/150 V/ac Descibility			
	of connecting in parallel (28 UE)			
	Discharge resister: $4 k \Omega / 0.22 A$			
	Discharge resistor: $1 \text{ K}\Omega/0.22 \text{ A}$			
	Socket with lamps Qty. 1(per unit)			
	I hree lamp-holders E14. Complete with three			
	incandescent lamps:			
	40 W/220 V. Possibility of connecting in parallel.			
	Stabilized power supply Qty. 1(per unit)			
	The power supply has two sections: Regulated			
	variable voltage section, used to supply the			
	armature of dc motors.			
	Output: 0 ÷ 240 Vdc, 5 A			
	Drive: manual or external via 0 ÷ 10 Vdc signal			
	Constant voltage section, used to supply the			
	excitation			
	circuit of dc machines. Output: 220 Vdc, 1 A			
	Phase control fault simulator Qty. 1(per unit)			
	Double time-constant standard light dimmer			
	circuit consisting of triac, diac, two control			
	potentiometers.			
	resistors and capacitors. A total of 20 faults can			
	be switched on using switches located behind a			
	cover			
	Typical faults: interruptions short-circuit faulty			
	components and faulty design			
	Power supply: 110 to 230 $V/47-63$ Hz			
	Obmic load: 1.2 kW max			
	EMI Filter Oty 1(per unit)			
	Inductances on the line: 0.4 mH			
	Canacitors botwoon conductors and neutral: 100			
	Consister between neutral and ground: 22 pF			
	Capacitor between neutral and ground. 22 IF			
1				

Isolation amplifier Qty. 1(per unit)			
Isolation amplifier, channels A, B, C, E:			
- Frequency range: dc to 80 kHz.			
- Max Input voltage: Max 620 Vdc/460 Vac			
Input resistance Ri = 1 MW in all ranges			
- Input current (between 0 and I) Max: 10 A			
continuous: 16 A for t< 15 min: 20 A for t<2 min.			
Internal resistance: 30 mW in all ranges			
Five outputs: A, B, C, D, E with led for over range			
Indication Output resistance RO: 100 W			
- Multiplexer:			
Mux channels, selectable: 1 to 8 (4 x signal; 4 x			
zero line) Gain attenuator, adjustable: 0.2 to 1.			
Y-position, adjustable: -8 V to + 8 V.			
Mux frequency, adjustable: 50 kHz to 500 kHz			
(typical).			
Two BNC outputs for oscilloscope			
Mathematical module and filter:			
- Functional modes for channel D: Addition A+B;			
subtraction AB; multiplication AxB/10 or AxB;			
reconstruction of the phase			
voltage LIN(A, B, C) from the line-to line			
voltages; channel E switched into channel D for			
multiplexing.			
- Filter			
Low pass active filter of the 2° order required for			
the recovery of the fundamental wave out of the			
PWM signals.			
Cut-off frequency: 1 kHz.			
Space vector indicator:			
- Voltage vector: indication with 7 led.			
- Magnetic flux vector: BNC outputs X e Y for			
oscilloscope.			
Power supply:			
- Single-phase from mains Frequency: 50/60 Hz.			

Support with 3 shunts 1 ohm			
Support with 3 shunts, with different connection			
possibilities.			
Resistance: 1 Ω ; Accuracy: ± 1% ; Max. current:			
2.5 A			
Support with 3 shunts 0.1 ohm Qty. 1(per			
unit)			
Support with 3 shunts, with different connection			
possibilities.			
Resistance: 0.1 Ω ; Accuracy: ± 1% ; Max.			
current: 8 A			
Frequency converter Qty. 1(per unit)			
Transistor pulse-converter with pulse driven			
voltage source inverter and transistor			
for the generation of a three-phase, variable			
frequency and variable voltage			
system. In conjunction with the PWM control unit			
this device is used for the realization of a			
frequency converter for asynchronous motor			
drive.			
Output voltage: 3 x 0230 V			
Output current: 3 x 8 A max.			
Supply voltages:			
power circuit, 1 x 255 V max, 50/60 Hz control			
circuit, single-phase from mains			
PWM Control Unit Qty. 1(per unit)			
Control unit used in conjunction with the			
frequency converter to			
build a voltage-source inverter which operates			
with PWM control.			
All of the control, monitoring and measuring			
functions are integrated into the control unit			
while the frequency converter contains solely the			
power components.			

	A DMM modulator controls the power transistors			
	of the inverter and thus generates a			
	of the inverter and thus generates a			
	sine-snaped motor current. Modulation			
	possibilities: PWW, VVC, trapezium snaped and			
	block type.			
	PC Interface Qty. 1 (per unit)			
	IN/OUT connector for connection to the control			
	unit and display for the visualization in			
	hexadecimal of the control word.			
	Two AO lines for analogue outputs: ±10 V.			
	Six AI lines for analogue inputs: ±10 V			
	The analogue signal is obtained from a D/A			
	converter with 12 bit resolution.			
	Auxiliary relay with led to show the switching			
	status. USB connection.			
	Power Electronics Software Qty. 1(per unit)			
	With this software it is possible to measure the			
	wave forms for voltage and current that can be			
	found in the static inverter and converter circuits.			
	Through a microprocessor based interface it is			
	possible to detect the wave forms and to send			
	the controls to obtain trigger angles through			
	software.			
	On the screen the true RMS value, the mean			
	value, the power and other parameters are			
	calculated in order to allow the evaluation of the			
	efficiency of the different circuits.			
	The software features a very accurate graphic			
	presentation and a user friendly interface with the			
	end user.			
	Induction Motor Control Software Qty. 1(per			
	unit)			
	With this software it is possible to realize the			
	PWM, VVC, trapezium shaped and block type,			

full and half frequency control of the frequency			1	
converter and to do the acquisition of the				
mechanical characteristics of the induction motor				
under testing				
Voltages, currents and other main characteristics				
are calculated both in numbers and as curves				
The software features a very assurate graphic				
The soliware reductes a very accurate graphic				
presentation and a user menory interface with the				
end user.				
Variable Three Phase Transformer Oty 1(per				
unit)				
Power supply: three_phase from mains Rated				
output: 550 VA				
Secondary phase current: 1.25 A				
Secondary voltage: 0 to 110 V				
The voltage is set by means of a variable				
autotransformer with rotary knob and the output				
is floating				
by means of an isolating transformer with				
subdivided secondary winding				
Fitted with mains lamp and motor circuit breaker				
Battery stack Oty 1(per unit)				
Two rechargeable batteries maintenance free				
and Canacity: 1.8 Ab/12 V				
Tachometer Otv. 1(per unit)				
Speed ranges: 1500/3000/6000 rpm				
Accuracy class: 1.5				
Output voltage: 1 V/1000 rpm				
Single phase supply unit Qty, 1(per unit)				
Power supply: single-phase from mains				
Cam operated 2-pole mains switch 16 A				
Automatic circuit breaker: 10 A. operated by				
thermal effect				
	Output terminals L and N, with pilot lamp Pilot			J
--	---	--	--	---
	lamp for indication of mains false polarity			ł
	Three phase supply unit Qty. 1(per unit)			1
	Power supply unit for three-phase connection			1
	with 4-pole cam mains switch.			l
	25 A current operated earth leakage circuit			1
	breaker, sensitivity 30 mA.			1
	Triple-pole motor protection switch: 6.3 to 10 A.			1
	Three-phase indicator lamps. Output through 5			1
	safety terminals: L1. L2. L3. N and PE.			1
	Digital AC/DC Multi-range Power meter			1
	Qty. 1(per unit)			1
	Automatic Scaling			1
	• Current range: 0-20 lac/dc 20 - 100Hz			1
	Voltage range: 0-750 Vac/dc 20 - 100Hz			1
	Power range: 0-1000W, VAR and VA			l
	• Accuracy: +/- 0.5%			1
	Resolution: 16bits			1
	Refresh rate : 0.5s			1
	Power supply: 90-260 Vac 50/60Hz			1
	Power consumption: 3 VA			1
	Communication: Modbus (RS485)			1
	True rms meter Qty. 2(per unit)			1
	Voltage:			1
	0 1000V DC			1
	01000VACpp			1
	0750VACrms			1
	Current: 0 20 A			1
	Continuous overload protection in all ranges.			l
	Moving iron voltmeter Qty. 1(per unit)			ł
	Scale: 50 divisions			l
	Range: 125-250-500 V			l
	Range changeover switch.			l
	Moving coil ammeter Qty. 1(per unit)			l

	Scale: 50 divisions and Range: 2.5 A				
	Asynchronous squirrel cage three phase				
	motor				
	Qty. 1(per unit)				
	Squirrel cage three-phase asynchronous				
	induction motor,				
	with three-phase stator winding and squirrel cage				
	buried in the rotor.				
	Rated power: 180 W and Voltage: 380/690 V Δ /Y				
	Slip ring three phase asynchronous motor				
	Qty. 1(per unit)				
	Induction motor with both stator and rotor three-				
	phase windings.				
	Power: 250 W ; Voltage: 220/380 V D/Y ;				
	Current: 1.65/0.95 A D/Y				
	Excitation: 92 V, 2 A ; Frequency: 50 Hz ; Cosq:				
	U.66				
	Speed: 1350 rpm and Thermal protection.				
	Rheostatic rotor Qty. 1(per unit)				
	Steps operated starter for three phase induction				
	The formula she find form: Stop registered value: $2 \times (12.6, 2, 1, 0) W$				
	Step resistance value. $5 \times (12-6-5-1-0) = 0$				
	Shunt excitation direct current motor				
	Power: 200 W · Voltage: 220 V · Current: 1.5 A				
	Excitation: 200 V , 0.067 A : Speed: 3000 rpm				
	Thermal protection				
	Shunt excitation direct current motor Qty.				
	1(per unit)				
	Power: 160 W ; Voltage: 220 V ; Current: 0.73 A				
	Excitation: 220V, 0.075A ; Speed: 2850 rpm				
	Thermal protection				
	Shunt excitation direct current generator				
	Qty. 1(per unit)				

Power: 160 W ; Voltage: 220 V ; Current: 0.73 A
Excitation: 220V, 0.075A ; Speed: 2850 rpm
Thermal protection.
Powder brake Qtv. 1 (per unit)
Maximum braking torque: 12 Nm
Power: 400 W · Voltage: $0 \div 24 \text{ V}$
Speed: 4000 rpm max, and Thermal protection
Load cell Otv 1(per unit)
Resistance electronic strain-gauge with 100 N
range to
he mounted on the brake unit for measuring the
mechanical torque
Devider broke control unit. Otv. 1(nor unit)
Speed eastion:
Speed Section.
- K2 connector for the speed transducer
- Circular scale three-range instrument:
1500/3000/6000 rpm
- Analogue output: 1 mV/rpm
l orque section
- K connector for the torque transducer
- Circular scale three-range instrument: 1.5/3/10
Nm
- Analogue output: 1 V/Nm
Brake control
- Output power: 0 to 12 Vdc, 0.5 A
- Manual, external or automatic regulation.
Thermal protection with alarm indication and
Recorder pen control.
Base Qty. 1(per unit)
Metallic structure, fire varnished, suitable for
mounting the machine or the group under test.
Complete with optical transducer for rotating
speed detection and with anti-vibration rubber
feet.
Flywheel Qty. 1(per unit)

	Used in deceleration tests on rotating machines			
	for calculation of			
	Mechanical iron and copper losses at different			
	excitations.			
	Stop clock Qty. 1(per unit)			
	Stopwatch with LCD display.			
	Measuring range: 9 h, 59 min, 59 s, 99/100 s and			
	Battery: 1.5 V			
	Frame Qty. 2(per unit)			
	Metal frame for assembling the modules of the			
	laboratory.			
	Connecting leads Qty. 1(per unit)			
	Set of connecting leads of different diameters			
	and lengths.			
	Storage Cabinet Qty. 1(per unit)			
	Experimental Capabilities			
	ALTERNATE CURRENT - DIRECT CURRENT			
	CONVERSION (RECTIFIERS)			
	• Single pulse rectifier, obmic load			
	Single pulse rectifier, ohmic load			
	Two-pulse rectifier, ohmic load			
	Two-pulse rectifier, ohmic-inductive load			
	Two-pulse bridge rectifier, ohmic load			
	Two-pulse bridge rectifier, ohmic-inductive load			
	 Three-pulse rectifier, ohmic load 			
	 Three-pulse rectifier, ohmic-inductive load 			
	 Six-pulse rectifier, ohmic load 			
	 Six-pulse rectifier, ohmic-inductive load 			
	 Six-pulse bridge rectifier, ohmic load 			
	 Six-pulse bridge rectifier, ohmic-inductive load 			
	SUR AND CONTROLLED RECTIFIERS			

	Single pulse converters			
	Single pulse converter, ohmic load			
	Single pulse converter, inductive load			
	Single pulse converter, ohmic-inductive load			
	Single pulse converter, ohmic-inductive load			
	and free-wheeling diode			
	Single pulse converter, ohmic-inductive load			
	and back e.m.f.			
	 Single pulse rectifier, ohmic-capacitive load 			
	Single pulse converter, ohmic-capacitive load			
	Two-pulse midpoint converters			
	Two-pulse midpoint converter, ohmic load			
	Two-pulse midpoint converter, ohmic-inductive			
	load			
	Multi-phase converters			
	Three-pulse midpoint converter, ohmic load			
	 Three-pulse midpoint converter, ohmic- 			
	inductive load			
	 Six-pulse midpoint converter, ohmic load 			
	 Six-pulse midpoint converter, ohmic-inductive 			
	load			
	Drainage-coil converters			
	Double three-pulse star converter, ohmic load			
	Bridge converters			
	 Half-controlled bridge, ohmic load 			
	 Half-controlled bridge, ohmic-inductive load 			
	 Half-controlled bridge, ohmic load 			
	 Half-controlled bridge, ohmic-inductive load 			
	 Fully-controlled bridge, ohmic load 			
	 Fully-controlled bridge, ohmic-inductive load 			
	 Fully-controlled bridge, ohmic load and back 			
	e.m.f.			
	 Fully-controlled bridge, dc motor load 			
	 Fully-controlled bridge, ohmic load and 			
	supplementary dc voltage			

	 Fully-controlled bridge, dc generator load 			
	Three-phase half-controlled bridge, ohmic load			
	Three-phase fully-controlled bridge, ohmic load			
	Three-phase fully-controlled bridge, ohmic-			
	inductive load			
	THYRISTORS & CONTROLLED AC/AC			
	CONVERTERS			
	Single-phase controllers			
	□Single-phase ac controller, ohmic load			
	Single-phase ac controller, inductive load			
	□Single-phase ac controller, ohmic-inductive			
	load			
	□Single-phase ac controller, ohmic load			
	□Single-phase ac controller, ohmic-inductive			
	load			
	□Half-controlled single-phase controller, ohmic			
	load			
	Three-phase controllers			
	□Fully controlled three-phase controller, star			
	ohmic load without neutral			
	□Fully controlled three-phase controller, star			
	ohmic load without neutral			
	□Three-phase controller, star ohmic load without			
	neutral			
	LIGHT DIMMER FAULT SIMULATOR			
	Double time-constant standard light dimmer			
	circuit consisting of triac, diac, two control,			
	potentiometers, resistors and capacitors.			
	Examples of exercises:			
	Fault-tree dimmer			
	• DIAC shorted			
	• DIAC WITH HIGH RESISTANCE			
	• The gale of TRIAC Works like a diode			
	• Assembly or component fault			

	Trimmer shorted						
	 Auxiliary RC circuit not included 						
	Variable resistance R shorted						
	TRIAC shorted						
	DIRECT CURRENT to DIRECT CURRENT						
	CONVERSION(CHOPPERS)						
	□ Main SCR						
	□ IGBT						
	Step-down converter with SCR with turn-off						
	circuit. PWM control.						
	Step-down converter with IGBT. PWM control.						
	Speed control of a dc motor						
	Step-down converter with MOSFET. PWM						
	control.						
	Step-down converter with MOSFET. PFM						
	control.						
	Step-down converter with MOSFET. TPC						
	control.						
	Step-up converter with IGBT. PWM control.						
	Step-up converter with IGBT. TPC control.						
	Inverting converter with IGBT. PWM control.						
	SWITCHABLE POWER SUPPLY						
	□ Flyback converter with IGBT. PWM control.						
	□ Forward converter with IGB1. PWM control.						
	□ Asymmetric half-bridge forward converter with						
						1	
	INVERIERS						
	□ Single-phase full-bridge ac chopper. PWM						
	Control.						
1		1	1	1		1	

Single-phase full-bridge inverter. Sinusoidal			
PWM control.			
FREQUENCY CONVERTERS			
Frequency converter			
Input controlled rectifier			
Output power inverter			
MOTOR DRIVES			
DC MOTOR DRIVE			
Single-quadrant drive with converter			
Single-quadrant drive with converter and			
armature voltage feedback			
Single-quadrant drive with converter and			
armature voltage feedback with RI compensation			
Single-quadrant drive with converter and			
tacho-voltage feedback			
Single-quadrant drive with converter and			
tacho-voltage feedback with inner current loop			
Two-quadrant drive (I-IV) with converter			
Two-quadrant drive (I-III) with converter			
Two-quadrant drive (I-III) with converter and			
tacho-voltage feedback with inner current loop			
□ Four-quadrant drive with converter □ Four-			
quadrant drive with converter and tacho-voltage			
feedback with inner current loop			
□ Single-quadrant drive with converter			
□ Single-quadrant drive with converter and			
AC SLIP-RING MOTOR DRIVE			
			I
			L

feedba Sche Sche feedba AC SQ Preli motor Six-p Puls Trap Puls Volta Moto charac Extra IxR c Ope Slip Moto	buised resistor and tacho-voltage bius static drive bius static drive and tacho-voltage bius static drive and tacho-voltage bius static drive and tacho-voltage bius static drive and tacho-voltage bius static drive bius static drive and tacho-voltage feedback				
--	---	--	--	--	--

Firm Name:	
Signature:	
Name:	
Designation:	
_	

Page **46** of **81**

Annex A-1

Special Instructions

Description		Bidder			
	Yes	No	Alternate Offer		
Environment Conditions					
(a) Temperature range: 05°C to +60°C					
(b) Relative humidity: 0-70% non-condensing					
Warranty period Two years from the date of commissioning. A warranty sticker is to be pasted on each					
imported item by the Supplier / OEM highlighting Name of Firm, Contract No and date, Description of Store and					
Warranty validity					
Training Notes Supplier will provide a set of handouts for training on operation and maintenance of the					
equipment					
Publications Supplier is to provide hard and soft copies (CD) of following manuals.					
(a) Operational / Maintenance manual : - Qty 01 with Equipment and additional Qty 02 for record					
purposes and should consist of following sections:-					
(1)Equipment Description /Operation:-					
(a)Specifications					
(b)Description					
(c)Operation					
(2)Servicing:-					
(a) Maintenance Schedule					
(b) Adjustment / test					
(c) Removal / Installation procedure					
(d) Tools Used					
(3) Trouble shooting guide					
(4) Cleaning requirements					
(5) Shipping and receiving					
(6) Storage requirements					
(b) IPB (Illustrated Parts Breakdown Manual) should have full parts description along with detailed diagrams					
(exploded view).					

(c) Experimental manuals which must contain the list and procedure of the experiments that equipment		
can perform.		
Spares / Technical Support		
(a) Supplier to have in-country spares / technical support and ensure spares and technical support /		
assistance for next 10 years		
(b) Comprehensive list of spares required for scheduled maintenance of Equipment is to be provided		
(c) Any software provided must have its license		
(d) Software upgrade support must be provided free of cost for 10 x years with renewed license at every		
upgrade		
(e) Supplier must also provide calibration service for at least 5 x years after commissioning		
Additional Spare / Replaceable parts.		
(a) Replaceable spare / parts during scheduled inspections are to be identified and provided as per		
requirement along with equipment sufficient to cater five years consumption.		
(b) All specialized / standard tools required for inspection / repair / servicing must be supplied along		
with equipment.		
Physical Inspection Criteria: 100% physical inspection of store will be carried out before commissioning of		
the equipment for following details:-		
(a) For physical damage, scratches and deformity.		
(b) Accessories /components as per contractual specifications.		
(c) Technical Manuals (Operation manual, user guide, IPBs).		
(d) Quality certificate and calibration certificate by the output that stars has been preserved from certified		
(e) DEM certificate and verifiable documents by the supplier that store has been procured from certified		
(f) Brand name and country of origin		
Commissioning		
(a) Commissioning of the equipment will be carried out by OEM rep at his own cost and risk at		
designated place at NUTECH.		
(b) Any special requirement for installation, operation and commissioning must be specified		
in the offer by the supplier.		
Training: Foreign Training Required:		
Factory acceptance test and 5 days training for two nominated faculty members before shipment at OEM		
expense (boding, lodging and travelling expenses).		

01 week OEM operational/ maintenance training at NUTECH.		
Improvement and Safety Measures: Any improvement and safety measures suggested by NUTECH during commissioning are to be resolved by the supplier / manufacturer at no extra cost.		
 Liability of Supplier (a) Verifiable OEM certificate of authorized dealership Supplier is to provide original OEM certificate of subject equipment bought directly from the manufacturer and being an authorized dealer. (b) In case the equipment supplied is not compatible with specifications, the supplier will be obliged to call his representatives at his own cost for consultation and corrective action 		
 Special Notes (a) Additional requirements for the maintenance of equipment (if any) must be intimated by the supplier in technical offer. (b) Supplier must provide the list of organizations using same equipment in Pakistan (if any). (c) Equipment must be a standard product of OEM available at web address of OEM. (d) In case of premature failure of the equipment, OEM has to replace / rectify the item free of cost. Required transportation charges would be borne by the supplier. 		

Firm Name
Signature
Name
Designation

Annex-B

TECHNICAL OFFER

NUTECH / SCM / Electrical Lab Eqpt (PSDP) 2020 / TD-110

Fill in following essential parameters:-

- 1. Validity of Offer: _____Days (Should not be less than **90 days**)
- 2. Delivery period: _____Days (after placement of order)
- 3. Country of Origin:
- 4. Warranty Period: ____

<u>General</u>

- 1. GST Number: _____ (Enclose Copy)
- 2. NTN / CNIC: ______ (if exempted, provide valid exemption certificate)

Payment Terms (through LC)

- 1. 80 % through LC on sight.
- 3. 20% after delivery, installation / commissioning, user satisfaction certificate.

Details of Foreign Principal Information with account details)

- 1. Name / Title:
- 2. Address:

OEM Name:	Firm Name:	Signature:
OEM Focal Person:	Firm Focal Person:	Official Seal:
OEM Phone Number:	Firm Phone Number:	Name:
OEM Email Id:	Firm Email Id:	Designation:

Page **50** of **81**

<u>Annex C</u>

SCHEDULE TO TENDER

Ser	Part No	Item Name/Size	Specification	A/U	Qty Req	Price Per Unit (USD)	Total Price (USD)
1		Electrical Machines Trainer	Electrical Machine Trainer comprising the following modules as per quantity mentioned against each: (a) Complete Electrical Machines Training Systems (Qty-3) (b) Open Lab Electrical Machines Training Systems (Qty-2) Total Qty (Req) = 3+2= 5	No	5 (3+2)		
	а	Module (a)	Complete Electrical Machines Training Systems with following Equipment				
	a(i)	Motor Driven Power Supply	 Motor Driven General Purpose Power Supply (Programmable) Suitable for fixed/Variable ac and dc current. Emergency Mushroom head. Over speeds Protection. Variable ac: 3x0÷380V, 2A & 3x0÷240V, 3A Fixed ac: 3x380V +N, 10A, 3x220V, 3A Variable dc: 0÷240V, 4A, 0÷225V, 1A Fixed dc: 220V, 4A Power Supply: 3x380V+N, 50/60Hz 				
	a(ii)	DC Machines	DC Machines-1: Direct Current Generator Series, Shunt and Compound Excitation It can be used as a motor 2800 r.p.m. Voltage: 220V Current: 1.18A Excitation: 190V/0.1A DC Machines-2: Direct Current Motor Series, Shunt and Compound Excitation It can be used as a Generator				

		Power: 260W. Speed: 2800 r.p.m.		
		Voltage: 220V Current: 1.18A		
		Excitation: 190V/0.1A		
a(iii)	Three Phase	Three Phase AC Motors-1:		
	AC Motors	Squirrel Cage Three-Phase Asynchronous Motor		
		Power: 370W. Speed: 2650 r.p.m. (50Hz), Connections:		
		Star/triangle.		
		Voltage: 220/380V Δ/Y		
		Current: $2/1.1A \Delta/Y$.		
		Three Phase AC Motors-2:		
		Three- Phase Wound Rotor Asynchronous Motor		
		Power: 370W. Speed: 2650 r.p.m. (50Hz), Connections:		
		Star/triangle. Voltage: 220/380V Δ/Y		
		Current: 2/1.1A Δ/Y.		
a(iv)	Single Phase	Single Phase AC Motors-1:		
	AC Motors	Capacitor Motor		
		Power: 370W		
		Speed: 2720 r.p.m. Frequency: 50Hz.		
		Voltage: 220 V, Current: 3A		
		Single Phase AC Motors-2:		
		Universal Motor		
		Speed: 3000 r.p.m. Frequency: 50Hz.		
		Voltage: 220 Vac/220Vdc.		
		Current: 3.5Aac/3Adc		
		Single Phase AC Motors-2:		
		Repulsion Motor		
		Speed: 3000 r.p.m. Frequency: 50Hz.		
		Voltage: 220 Vac/220Vdc.		
 a (1)	Cingle Dhees	Current. 5.5AdC/5AdC		
a(v)	Single Phase	Single Phase Transformer		
	Transformer	Power Pated: 2001/A		
		Primany Voltage: 127/220/280V		
		Fillidiy Vullaye. 121/220/300V Secondary Voltage: 2 x 110V		
		It is also used as an Auto Transformer		
	1			

a(vi)	Three Phase	Three Phase Transformer:			
	Transformer	Column-type transformer with split windings.			
		Power Rated: 300VA			
		Primary Voltage: 2 x 110V (Phase)			
		Secondary Voltage: 2 x 110V (Phase)			
		It is also used as a Single-Phase Transformer			
a(vii)	Measuring	Electrical Power Digital Measurement Unit:			
	Modules	DC Voltage: 500V			
		AC Voltage: 500V			
		DC Current: 9.9A			
		AC Current: 9.9A			
		Power: 600W			
		Mechanical Power Digital Measurement Unit:			
		Torque: 0 ÷ 1.999 Nm; Speed: 6000 rpm			
		Power: 600W			
		Dc Output: 0 ÷ 220V, 0.6A			
		Power Supply: 220V, 50/60Hz			
a(viii)	Load Cell	Load Cell:			
		Resistance electronic strain-gauge 150N			
		Range, to be mounted on the braking system to measure the			
		mechanical torque.			
a(ix)	Braking	Eddy-Current Brake			
	Assemblies:	(Electromagnetic Brake)			
		Smooth roll and salient pole stator			
		Speed: 5000 rpm			
		Power: 450W Power Supply: 250Vdc			
a(x)	Power Supply	Power Supply for Breaking Systems:			
	for Break	Output: 0÷120V, 2 A or 0÷220V, 1 A.			
 		Power supply: single-phase from mains			
a(xi)	Universal Base	Universal Base for Motors:			
		Anti-vibration rubber feet, fixing of two machines and with			
		coupling guard and locking of the rotor of the slip-ring			
		Asynchronous machines.			
a(xii)	Connecting	Connected Leads			
	Leads				

a(xiii)	Loads and	Capacitive Load:			
	Accessories	Single Phase or Three Phases Capacitive step-variable Load			
		Power: 3 x 105VAr			
		Voltage: 220/380V Δ/Y.			
		Inductive Load:			
		Single Phase or Three Phase Capacitive step-variable Load			
		Power: 3 x 100VAr			
		Voltage: 220/380V Δ/Y			
		Resistive Load:			
		Single Phase or Three Phase Capacitive step-variable Load			
		Power: 3 x 110W			
 		Voltage: 220/380V Δ/Υ.			
a(xiv)	Accessories	Starting Rheostat,			
		Excitation Rheostat,			
		Star/Delta Starter,			
		Pole Switching Unit,			
 h	Madula (h)	Other accessories which will be useful in trainer			
D	Module (b)	Open Lab Electrical Machines Training Systems with			
b(i)	SET OF	It includes the following components:			
	COMPONENTS	Base plate			
		Supports with bearing			
		Coupling joints			
		Flexible coupling			
		Electronic speed transducer			
		Assembling screws			
		AC stator			
		AC Sidioi Rotor with commutator			
		Rush holder with 2 brushes			
		Cade rotor			
		Ring rotor			
		Brush holder with 6 brushes			
		The short description of the above given below:			
			1		

	This system is a complete set of components and modules		
	This system is a complete set of components and modules		
	suitable for assembling the rotating electric machines, both for		
	direct current and for alternating current.		
	Besides, a magnetic probe is foreseen to display the magnetic		
	fields and a transparent covering, for safety reasons, prevent		
	students from the accidental contact with the rotating parts.		
	The AC STATOR is composed of a metal frame supporting the		
	laminated magnetic circuit, because interested by a flux		
	variable in time, and the electrical winding. The		
	sheet iron pack is 60 mm long, with internal diameter of 80		
	mm and external one of 150 mm and it presents 24 half-closed		
	slots inside of which there is a double three-phase winding: the		
	beginnings and the ends of the different phases are shown		
	outside the stator on a suitable educational terminal board. The		
	winding is a double layer one of the long coil lap type, with		
	winding span 6 (1 \pm 7) Every slot contains two coils of 19 turns		
	each of enameled wire of diameter 1 12 mm		
	The SOURREL CAGE ROTOR is composed of a shaft to		
	which a pack of magnetic sheet irons is fixed, where the slots		
	suitable to contain the rotor winding are set. The sheet iron		
	pack is 60 mm long, with external diameter of about 78 mm. To		
	pack is out this honomonon of the mater arouting in starting phase		
	avoid the phenomenon of the motor crawing in starting phase		
	and to reduce the noise, the slots are inclined as regards the		
	stator ones. The rotor winding is composed of the squirrei cage.		
	The cage is carried out by setting in every rotor slot some		
	conducting bars that are closed in short-circuit at both ends by		
	means of some conducting rings. The rotor winding can be		
	therefore considered a multi-phase winding, with a single		
	conductor for pole- phase, so it does not present its proper pole		
	number but it assumes one that is equal to the stator winding		
	one.		
	The RING ROTOR is composed of a shaft to which the collector		
	rings and a magnetic sheet iron pack are fixed: the iron pack		
	has 21 semi-closed slots suitable to contain the winding. The		
	sheet iron pack is 60 mm long, with external diameter of about		
	78 mm. To avoid a noisy mechanical running the rotor slots are		

		inclined as regards the stator ones. The rotor winding is composed of coils and it is two pole three-phase. The winding is a double layer one of the long coil lap type, with winding span 9		
		enameled wire of diameter 1.5 mm. The winding is star		
		connected and it is subordinate to the collector rings while the		
		star centre is internal and not accessible. The terminals of the		
		rotor winding are accessible by means of the collector rings on		
		which the bushes supported by a brush holder graze. The		
		brushes are two for each phase and they are subordinate to an		
		external terminal board that shows the synoptic of the rotor		
		The DC STATOP is composed of a motal frame supporting the		
		laminated magnetic circuit, with 2 main poles and 2 inter poles		
		and the electrical windings. The sheet iron pack is 60 mm long.		
		with internal diameter of 80 mm. On the poles the coils are		
		wound whose terminals are shown on a suitable educational		
		terminal board.		
		The DC ROTOR is composed of a shaft to which the segment		
		commutator is fixed and of a magnetic sheet iron pack where		
		20 semi-closed slots suitable to contain the electrical winding		
		are set. The sheet iron pack is 60 mm long, with external		
		the long coil lop type, with winding span 9 (1:10). Every slot		
		contains two coils with two sections of 5 ± 5 turns carried out with		
		enameled wire of diameter 1.12 mm. The winding is		
		subordinate to the 40 segments of the commutator on which		
		two brushes are supported by a brush holder graze. The		
		brushes are subordinate to terminals set on two external boards		
		that show the synoptic of the rotor winding.		
b(11)		POWER SUPPLY Outputs in ac:		
	JUFFLI	 Intee-phase: 24 V/14 A, 42V/10A Single phase: 0 48 V/5 A 0 10 V/12A Outputs in do: 		
		• 32 $V/14 \Delta 42 V/10 \Delta 0 = 40 V/5 \Delta 0 = 8 V/12 \Delta$ Three phase		
		power supply from mains. Complete with over-speed protection		
			1 1	

	b(111)	ELECTRIC	Power supply: 100-240 Vac 50/60 Hz				
		AND SPEED	 Vac/Vdc measurement range: 0-65V 				
		MEASUREME	 lac/ldc measurement range: 0-20A 				
		NT	 Speed measurement range: 0- 4000 rpm at 50Hz 				
			0-6000 rpm at 60Hz Communication: Modbus RTU RS485				
			Encoder resolution: 5 pulses / revolution				
	b(iv)	LOADS AND	resistors:				
		RHEOSTAT	• 3x15 Ohm, 90 W each, 1 Ohm + (0 - 2 Ohm), 80 W				
			capacitors: 3 x 80 µF, 150 V				
			• rheostat: 0 - 80 Ohm. 1 A				
	b(v)	ADAPTER	Necessary for connecting the locking device, the brake or the				
		BRACKET	drive motor.				
	b (<i>v</i> i)		Cuitable for locking and retating the rates of all ring industion				
	D(VI)		suitable for locking and rotating the rotor of slip- fing induction				
		RUTATING	motors to obtain an induction regulator and phase transformer				
	b(vii)	POLE	Switch to change the number of poles on motors.				
		CHANGING					
	b(viii)	PARALLEL	Rotating light synchronoscope to perform the parallel				
		BOARD	connection between synchronous generators or between the				
			alternator and the mains.				
	b(ix)	ELECTROMAG	Smooth roll rotor and salient pole stator				
		NETIC	For three-phase squirrel cage induction motors.				
		BRAKE&STAR					
		/DELTA					
		STARTER					
_	b(x)	STARTING	Rotor starter for three-phase slip ring motors and excitation				
		AND	device for synchronization with the mains.				
		SYNCHRONIZ					
		ATION					
-	b(vi)		Set of 4 masks to insert simulated faults in the machines of the				
			OPENI AR system. The set includes:				
			• FALLET SIMILIATOR FOR A THREE-PHASE CAGE MOTOR				
			Short-circuit between two phases - Break-up of a stator phase				
			- Short-oncur between two phases - break-up of a statol phase				
1	1	1	1 - DIGAR-UD ULIWU DHABEB - HIGHIAI SHULEUIUUU	1	1	1	

		• FAULT SIMULATOR FOR A SLIP RING MOTOR - Short-		
		circuit between two phases - Break-up of a stator phase		
		- Internal short-circuit		
		• FAULT SIMULATOR FOR A SINGLE-PHASE CAPACITOR		
		MOTOR - Unsuccessful starting of the motor		
		• FAULT SIMULATOR FOR A COMPOUND EXCITED DC		
		MOTOR - Unsuccessful starting of the motor - Break-up of a		
		stator phase - Shunt excitation circuit reversal		
b(xii)	Accessories	Starting Rheostat,		
		Excitation Rheostat,		
		Star/Delta Starter,		
		Pole Switching Unit,		
		Other accessories which will be useful in trainer		
		Experimental Capabilities		
		Flux produced by the poles		
		Main magnetic field		
		Intensity of the magnetic field		
		Induced voltage		
		Inter pole effect		
		No-load magnetic neutral axis		
		Rotating magnetic field		
		3-phase squirrel cage motor, 2 poles, 24 V Δ		
		3-phase squirrel cage motor, 2 poles, 42 VY		
		3-phase squirrel cage motor, 2 poles, 24 V $\Delta\Delta$		
		3-phase squirrel cage motor, 2 poles, 42 VYY		
		3-phase squirrel cage motor, 4 poles, 24 V Δ		
		3-phase squirrel cage motor, 4 poles, 42 VY		
		3-phase motor, 4/2 poles, 42 VΔ/YY		
		Split phase motor		
		Capacitor start and run motor		
		3-phase motor with wound rotor, 2 poles, 42 VYY		
		Phase shifter		
		Induction regulator		
		3-phase synchronous induction motor, 2 poles, 24 V Δ		
		$ $ 3-phase synchronous induction motor, 2 poles, 24 V $\Delta\Delta$		

		DC motor with senarate excitation			
		DC motor with shunt excitation			
		DC motor with sories excitation			
		DC motor with compound excitation long abunt			
		DC motor with compound excitation, long shunt			
		DC motor with compound excitation, short shunt			
		Single phase series motor			
		Repulsion motor			
		Synchronous motor winding resistance			
		Synchronous motor no-load test			
		Synchronous motor short-circuit characteristics			
		Synchronous motor short-circuit test			
		Synchronous motor Behn-Eschenberg's method			
		Synchronous motor load test			
		Synchronous motor conventional efficiency			
		Parallel connection of the alternator with the mains			
		Alternator as synchronous motor			
		DC generator winding resistance			
		DC generator test of the no-load motor (Swinburne)			
		DC generator no-load e.m.f.			
		DC generator excitation characteristics			
		Separate excitation dynamo			
		Shunt excitation dynamo			
		Series excitation dynamo			
		Compound excitation dynamo			
2	Power	Selenium rectifier Otv. 1(per unit set)	No	2	
	Electronics	Rated alternated voltage: 30 Vrms		-	
	Trainer	Rated continuous voltage: 24 Vav			
	(Complete	Rated continuous current: 10 Aav			
	Package)	Silicon diode Qtv. 4(per unit)			
	i uonugo,	Direct average current: $IFAV = 12 A max$			
		Direct non repetitive overload current:			
		IESM = 75 A (tn = 10 ms)			
		Repetitive peak reverse voltage: LIRRM = 1000 V			
		Recovery reverse time: trr – 65 ns may			
		Group of diodes Otv 1(per unit)			
		Siv fast acting silicon diodes with RCD protection			
		Group of diodes Qty. 1(per unit) Six fast acting silicon diodes with RCD protection			

	notwork quitable for realizing non-controlled reatifying airquite		
	Direct average current: $IEAV = 12.4$		
	Direct non repetitive overload current:		
	IFSM = 75 A (tr = 10 ms)		
	$P_{\text{ODD}} = 75 \text{ A} (p = 10 \text{ HS})$		
	Repetitive peak reverse voltage. $ORRM = 1000 \text{ v}$		
	$\begin{array}{c} \text{CCP} \\ CCP$		
	SCR $Q(y, 1)$ (per unit)		
	Direct average current. $\Pi AV = 7.6 A \Pi AX$.		
	Max, repetitive reverse veltage: LDDM _ 200 \/		
	$\frac{1}{1000}$		
	Trigger current: IGT = 15 mA max.		
	Crown of SCR		
	Group of SCR Qty. 2(per unit)		
	Six sincon controlled rectiners with RCD protection		
	Direct every surrant TAV - 7.0 A move		
	Direct average current. $TAV = 7.6 A max$.		
	Max, repetitive reverse veltage: LDDM _ 200 \/		
	Max. Tepetitive reverse voltage: $URRIM = 800 V$		
	Trigger current: $IGT = 15 \text{ mA max}$.		
	1 figger voltage: UG1 = 1.5 V max.		
	12t = 72 A2S		
	Finac Qty. 1(per unit)		
	Bidirectional thyristor used for the control in alternated		
	Current. Complete with RC suppressor network.		
	True RMS value of the direct current: TLAV = 8 A max.		
	IISM = 70 A, 50 Hz (77 A, 60 Hz)		
	Max. repetitive reverse voltage: $UDRM = 800 V$		
	Figger current: IGT = 25 mA max. (all the quadrants)		
	Trigger voltage: UGT = 2.5 V max.		
	State keeping current:		
	IH = 25 mA max.		
	12t = 24 A2S		
	N-channel enhancement mode power MOS with		
	Integrated reverse diode (FRED, Fast Recovery Epitaxial		

	Diode) used as very fast switch in switching regulators and		
	inverters		
	Drain-source voltage: UDS = 400 V		
	Continuous drain current: $ID = 10 A$		
	Drain-source on-state resistance: $RDS(on) = 0.55.0$		
	Gate-source voltage: UGS = ± 20 V		
	IGBT Qty. 2(per unit)		
	N-channel Insulated Gate Bipolar Transistor (IGBT) with		
	anti parallel hyper fast protection diode used as very		
	fast switch in switching regulators and inverters.		
	Collector-emitter voltage: UCES = 600 V		
	Continuous collector current: Ic=24 A at Tc=25°C		
	Collector-emitter saturation voltage:		
	UCEsat = 1.8 Vtyp at Ic=15 A		
	Gate-emitter voltage: UGE = ± 20 V		
	Group of IGBT Qty. 1(per unit)		
	4 N-channel Insulated Gate Bipolar Transistors (IGBT) with anti		
	parallel hyper		
	fast protection diode used as very fast switches in switching		
	regulators and inverters.		
	Collector-emitter voltage: UCES = 600 V		
	Continuous collector current: Ic = 24 A at Tc = 25°C		
	Collector-emitter saturation voltage:		
	UCEsat = 1.8 Vtvp at Ic=15 A		
	Gate-emitter voltage: UGE = ± 20 V		
	Bridge three phase rectifier Qty. 1(per unit)		
	Non-controlled three-phase rectifier in six pulse bridge		
	connection		
	B6UK for the generation of a DC voltage from a three phase		
	mains.		
	Rated alternating input voltage: UVN = 400 V		
	Direct output voltage: Ud = 540 V		
	Rated direct current: IdN = 10 A		
	Surge forward current:		
	IFSM = 300 A		

	12t = 400 A2s		
	Voltage drop: UE = 1 V per diode		
	SCR with turn off circuit Qtv. 1(per unit)		
	Main SCR and auxiliary SCR complete with RC uppressor		
	circuit		
	Direct average current: $ T\Delta\rangle/ = 13 \Delta$ max		
	Max, repetitive reverse voltage:		
	IDPM = 800 V/ta = 25 mc		
	DDRM = 000 V (q = 33 ms		
	Move repetitive reverse veltage: LDDM _ 600 V(10)/ _ 8.4		
	Nax. Tepetitive Teverse voltage. ODRIVI = 000 V TAV = 0 A Turn off conscitor: $C = 2 \mu \Gamma$		
	$\int u(r) dr $		
	Oscillation coll. $L = 1 \text{ Infl}$		
	Shunt for the measurement of the currents in each branch: 4 x		
	0.1Ω		
	DC Power Supply Qty. 1(per unit)		
	Laboratory power supply with two fixed voltage outputs		
	and protected against short-circuit.		
	Output voltages: +15 V ; 0 V ; -15 V		
	Output current: 2,4 A (3 A for a short period)		
	Power supply: single-phase from mains		
	Two led (+15 V; -15 V) for the indication of the nominal voltage.		
	Mains switch with pilot lamp		
	Voltage Reference Generator Qty. 1(per unit)		
	Power supply: +15 V ; 0 V ; -15 V		
	Range of the continuous regulation reference signal:		
	from - 10 V to + 10 V, from 0 to + 10 V		
	Range of the step reference signal:		
	from - 10 V to + 10 V, from 0 to + 10 V		
	Switch for selecting between internal potentiometer		
	reference signal and external reference signal		
	Switch for selecting between the 0 / ±10 V range and the 0 /+10		
	V range		
	Trigger point limiter Qty. 1(per unit)		
	Stability limit for rectifier: 0° to 180°		
	Stability limit for inverter: 180° to 0°		
	Power supply: +15 V / 0 V / - 15 V		

	Two pulse control unit Qty. 1(per unit)	
	Power supply: +15V/0V / - 15V (25mA)	
	Synchronization voltage: 1 to 440 V	
	Control voltage Uc: 0 V to 10 V	
	Trigger angle: 180° to 0°	
	Number of outputs: 2 x 2	
	Possibility of pulse train or single pulse.	
	Possibility of selecting two natural switching points: 0° and 30°.	
	Inhibit voltage:	
	UINH = 15 V (open): trigger pulses.	
	UINH = 0 V: no triager pulses.	
	Six pulse control unit Qtv. 1(per unit)	
	Power supply: +15V/0V/- 15V (300mA)	
	Synchronization voltage: 1 to 440 V	
	Analogue control voltage Uc: 0 to 10V	
	Digital TTL control: DWH = FHFFH (15255)10	
	Trigger angle: 180° to 0°(300°120°/60°240°)	
	Number of outputs: 3 x 2	
	Possibility of pulse train or single pulse.	
	Possibility of excluding the secondary pulse.	
	Possibility of selecting three natural switching points: 0°, 30° and	
	60°.	
	Inhibit voltage:	
	UINH = 15 V (open): trigger pulses.	
	UINH = 0 V: no trigger pulses	
	PWM, PFM, TPC control unit Qty. 1(per unit)	
	Power supply: +15V/0V/- 15V (600 mA)	
	Control voltage: Uc: 0 to 10V	
	PWM: 20-200 Hz/0.2-2 kHz/2-20 kHz	
	Duty cycle D = $ton/T = 0.0.95$	
	PFM: 5-50 ms/50-500 ms/0.5-5 s	
	Frequency: 20 Hz to 20 kHz	
	TPC: Hysteresis: UH = 0 to 2 V	
	Number of outputs: 2 x 2, with led indication of the status	
	Output amplifier: threshold voltage 5 V, short-circuit proof	
	Inhibit voltage:	

	LIINH – 15 V (open): trigger pulses		
	UNH = 0.1/1 langer pulses at cortain outputs only		
	O(N = 0 v. folger pulses at certain outputs only.		
	Run-up control unit Qty. I(per unit)		
	Power supply: -15 V/U V/ 15 V		
	Input signal range: $UI = -10 V \dots 10 V$		
	Fine adjustment of the slew-rate:		
	0.5 50 V/s		
	Fine adjustment of the voltage gain: 0.1 1		
	Inhibit voltage: UINH = 0 V: zero output voltage U0 and output		
	UINH = 15 V		
	UINH = 15 V (open): output voltage U0 runs up and output		
	UINH =0 V		
	PID Controller Qty. 1(per unit)		
	Standard industrial controller that can be used as P, PI, PD or		
	PID		
	controller in the closed loop automatic control systems.		
	Power supply: +15 V : 0 V : -15 V		
	Input summing node for two different reference variables UR		
	and		
	UC and for one controlled variable UA.		
	Signal voltage range: -10V +10V		
	Parameters of the controller continuously adjustable		
	Proportional gain: $K_{D} = 0$ 1000		
	Time of the integral action: $TI = 1ms = 100s$		
	Time of the derivative action: $TD = 0.2ms$ 20s		
	Poset input of the integral controllor		
	Output summing node to add or subtract noise variables		
	Mossurement terminal for the error signal		
	Adjustment screw for the output offset		
	Aujustinent sciew for the conce of deviation		
	Coores and fine adjustment of the propertional gain Kn, of the		
	time of the integral action TL and of the time of the derivative		
	ume of the integral action of and of the time of the derivative		
	autori i D. Indicator of over renges led "ever" on when the		
	indicator of over-range: led over on when the		
	output voltage is higher than 10 V or lower than -10 V.		
	Input loff for resetting the I controller.		

	A	bsolute value generator Qty. 1(per unit)		
	Po	ower supply: -15 V/0 V/+15 V		
	In	put signal range Ui: -10 V + 10 V		
	Ad	djustable gain: 0 1		
	In	verting control input:		
	UI	INV = 0 V: the input signal is inverted		
	UI	INV = 15 V or disconnected: the input signal is not inverted		
	In	hibit voltage:		
	UI	INH = 0 V: the output signal is zero		
	UI	INH = 15 V (open): the absolute value circuit is active		
	A	daptive PI controller Qty. 1(per unit)		
	Do	ouble compact PI controller for use as current controller in dc		
	Se	ervo drives.		
	Po	ower supply: -15 V/0 V/+15 V		
	In	put summing point for two different reference variables UR		
	ar	nd UC and one controlled variable UA.		
	Si	ignal voltage range: -10 V + 10 V		
	Co	ontinuously adjustable parameters of the two controllers:		
	pr	roportional gain $Kp = 0 \dots 1000$		
	int	tegral action time $TI = 0.2 \text{ ms} \dots 20 \text{ s}$		
	In	tegral element reset by switch or via external signal.		
	Re	egulator selection by switch or via external signal.		
	Ga	ain and Offset Adjust Qty. 1(per unit)		
		ower supply: +15 V; 0 V; -15 V		
	Ve	oltage interval of the input signal: -50 V,, +50 V		
	AC	ajustable level through the setting of the gain: 01, 0 10,		
	0	100 ttanuation of the pulse signals		
		ime constants: 0.1 10 ma : 10 100 ma		
		ffeet veltages that can be connected: 10 V 10 V		
		area sotting through retary switches. Potentiomator fina		
		atting		
	SC M	ains transformers Oty 1(ner unit)		
		hree-phase transformer able to supply single and three phase		
		litages		
	V	Jilagoo		

	as well as a rectified voltage for the excitation of the dc		
	machines.		
	Three pilot lamps for signaling the mains voltage.		
	AC output through isolation transformer: 3 x 90 V/1.5 A with 3		
	intermediate sockets at 45 Vac.		
	DC output, non isolated from mains: 1 x 220 V/1 A, switch with		
	pilot lamp and magneto-thermal protection 1 A		
	Capacitors Qty. 1(per unit)		
	Two electrolytic high performance capacitors.		
	Rated value: 2 x 1000 µF		
	Rated voltage: 385 V		
	Protection against polarity inversion.		
	Discharge resistance: 330 k Ω (t = 330 s)		
	Super-fast fuses Qtv. 2(per unit)		
	Nominal voltage: 660 Vac		
	Nominal current: 3 x 6.3 A and 3 x 10 A		
	Switching transformer Qtv. 1(per unit)		
	Ferrite core N27 without air gap.		
	Primary: 2 x 115 V. 2 x 48 turns		
	Thermal protection: 2 x 0.6 A		
	Secondary: 2 x 15 V/ 4.5 A. 2 x 7 turns		
	Inter-winding shield, Rated power: 135 VA Rated frequency: 15		
	kHz		
	Current transformer Qtv. 1(per unit)		
	For potential-free measurements of ac currents in single and		
	three-phase without neutral		
	Current: 10 A		
	Unsmoothed output voltage for synchronization		
	Smoothed output voltage for current regulator		
	Transformation ratio: 2 V / 1 A and Insulation voltage: 3 kV		
	Trigger pulse switch Qtv. 1(per unit)		
	For switching the trigger pulses from the control unit to double		
	converters in 4-quadrant systems		
	Two pulse inputs and Two control inputs		
	Fight electrically isolated pulse outputs and Power supply: +15		
	v		

	Switching logic Qtv. 1(per unit)			
	Input Xn for torque comparator (speed set point value).			
	Input Xi for current comparator with adjustable limit threshold	_		
	Output SA and SB for the corresponding inputs of the	·		
	trigger pulse switch with led indication of the active converter			
	Output INIV for the corresponding inverting input of the absolu	Ito		
	value generator			
	Output INH for the corresponding inhibit input of the two puls	<u> </u>		
	Output INFI for the corresponding infibit input of the two puls	e		
	control unit, with adjustable delay time from 10 ms to 2 s and			
	led indication of the commutating time.			
	Current comparator output C for EXT selection input of the			
	active elements of the adaptive PI controller.			
	Power supply: +15 V/0 V/-15 V			
	Function generator Qty. 1(per unit)			
	Functions: sine / triangle / square wave / square wave with			
	variable duty cycle.			
	Frequency range: 10 Hz 100 kHz in 4 decades.			
	Output voltage: 0 V to 20 Vpp adjustable			
	Two additional outputs with attenuator: -20 dB/ -40 dB			
	TTL output for triggering. VCO input, AC coupled.			
	Power supply: single-phase from mains			
	Voltage divider 20:1 Qty. 1(per unit)			
	Electronic voltage divider used as an interface between the d	С		
	machines (200 V) and the automatic control circuits (-10 V			
	+15 V). `´´			
	Possibility of capacitive filter with time constant 0.1 s.			
	Protection against over voltages up to 1000 Vdc.			
	Power supply: +15 V / 0 V / - 15 V			
	Universal Load Qtv. 1 (per unit)			
	Ohmic, inductive and capacitive load suitable for the			
	experiments in the power electronics laboratory.			
	a) Load resistors: 3 x 100 $\Omega/1$ A and Protection with fuses: 3	x		
	Т1.25 А			
	Possibility of connecting in series (300 Ω), in parallel (33 33 Ω	2)		
	or in star and delta	-,		
	b) Load inductors: $2 \times (12.5 - 50) \text{ mH}/2.5 \text{ A}$			
	TTL output for triggering. VCO input, AC coupled. Power supply: single-phase from mains Voltage divider 20:1 Qty. 1(per unit) Electronic voltage divider used as an interface between the d machines (200 V) and the automatic control circuits (-10 V +15 V). Possibility of capacitive filter with time constant 0.1 s. Protection against over voltages up to 1000 Vdc. Power supply: +15 V / 0 V / - 15 V Universal Load Qty. 1 (per unit) Ohmic, inductive and capacitive load suitable for the experiments in the power electronics laboratory. a) Load resistors: 3 x 100 Ω/1 A and Protection with fuses: 3 T1.25 A Possibility of connecting in series (300 Ω), in parallel (33.33 G or in star and delta b) Load inductors: 2 x (12.5 - 50) mH/2.5 A	x 2)		

	Possibility of connecting in series (100 mH) and in parallel (6.25		
	mH)		
	c) Load capacitors: 4-8-16 uE/450 Vac Possibility of connecting		
	in parallel (28 μ E)		
	Discharge resistor: $1 k\Omega/0.22 A$		
	Socket with Jamps Oty 1(per unit)		
	Three lamp holders E14. Complete with three incondessent		
	Iamps:		
	40 W/220 V. Possibility of connecting in parallel.		
	Stabilized power supply Qty. 1(per unit)		
	The power supply has two sections: Regulated variable voltage		
	section, used to supply the		
	armature of dc motors.		
	Output: 0 ÷ 240 Vdc, 5 A		
	Drive: manual or external via 0 ÷ 10 Vdc signal		
	Constant voltage section, used to supply the excitation		
	circuit of dc machines. Output: 220 Vdc, 1 A		
	Phase control fault simulator Qty. 1(per unit)		
	Double time-constant standard light dimmer circuit consisting of		
	triac, diac, two control potentiometers,		
	resistors and capacitors. A total of 20 faults can be switched on		
	using switches located behind a cover.		
	Typical faults: interruptions, short-circuit, faulty components and		
	faulty design.		
	Power supply: 110 to 230 V, 47-63 Hz		
	Ohmic load: 1.2 kW max		
	EMI Filter Qty. 1(per unit)		
	Inductances on the line: 0.4 mH		
	Capacitors between conductors and neutral: 100 nF		
	Capacitor between neutral and ground: 22 nF		
	Isolation amplifier Qty. 1(per unit)		
	Isolation amplifier, channels A, B, C, E:		
	- Frequency range: dc to 80 kHz.		
	- Max Input voltage: Max 620 Vdc/460 Vac		
	Input resistance Ri = 1 MW in all ranges		

	- Input current (between 0 and I) Max: 10 A continuous: 16 A for		
	t = 15 min: 20 Å for $t = 2 min$		
	Internal registance: 20 m/V in all ranges		
	Five outpute: A B C D E with led for over renge		
	Five outputs. A, B, C, D, E with led for over range		
	Indication Output resistance RO: 100 W		
	- Multiplexer:		
	Mux channels, selectable: 1 to 8 (4 x signal; 4 x zero line) Gain		
	attenuator, adjustable: 0.2 to 1.		
	Y-position, adjustable: -8 V to + 8 V.		
	Mux frequency, adjustable: 50 kHz to 500 kHz (typical).		
	Two BNC outputs for oscilloscope		
	Mathematical module and filter:		
	 Functional modes for channel D: Addition A+B; subtraction 		
	AB; multiplication AxB/10 or AxB; reconstruction of the phase		
	voltage LIN(A, B, C) from the line-to line voltages; channel E		
	switched into channel D for multiplexing.		
	- Filter		
	Low pass active filter of the 2° order required for the recovery of		
	the fundamental wave out of the PWM signals.		
	Cut-off frequency: 1 kHz		
	Space vector indicator:		
	Voltage vector: indication with 7 led		
	Magnetic flux vector: PNC outputs X o X for appillescope		
	- Magnetic flux vector. Dive outputs \wedge e filor oscilloscope.		
	Power supply.		
	- Single-phase from mains Frequency: 50/60 Hz.		
	Support with 3 shunts 1 onm		
	Support with 3 shunts, with different connection possibilities.		
	Resistance: 1 Ω ; Accuracy: ± 1% ; Max. current: 2.5 A		
	Support with 3 shunts 0.1 ohm Qty. 1(per unit)		
	Support with 3 shunts, with different connection possibilities.		
	Resistance: 0.1 Ω ; Accuracy: ± 1% ; Max. current: 8 A		
	Frequency converter Qty. 1(per unit)		
	Transistor pulse-converter with pulse driven voltage source		
	inverter and transistor		
	for the generation of a three-phase, variable frequency and		
	variable voltage		

	system. In conjunction with the PWM control unit this device is		
	system. In conjunction with the FWW control unit this device is		
	useu iui iie iealizaliuii ui a froquency converter for sevechronous motor drive		
	Autout voltago: 2 x 0 - 220 V		
	Output ourrent: 2 x 8 A max		
	Oulput current. 5 x 6 A max.		
	Supply voltages:		
	power circuit, 1 x 255 v max, 50/60 Hz control circuit, single-		
	phase from mains		
	PWM Control Unit Qty. 1(per unit)		
	Control unit used in conjunction with the frequency converter to		
	build a voltage-source inverter which operates with PWM		
	control.		
	All of the control, monitoring and measuring functions are		
	integrated into the control unit		
	while the trequency converter contains solely the power		
	components.		
	A PWM modulator controls the power transistors of the inverter		
	and thus generates a		
	sine-shaped motor current. Modulation possibilities: PWM,		
	VVC, trapezium shaped and block type.		
	PC Interface Qty. 1 (per unit)		
	IN/OUT connector for connection to the control unit and display		
	for the visualization in hexadecimal of the control word.		
	Two AO lines for analogue outputs: ± 10 V.		
	Six AI lines for analogue inputs: ±10 V		
	The analogue signal is obtained from a D/A converter with 12		
	bit resolution.		
	Auxiliary relay with led to show the switching status. USB		
	connection.		
	Power Electronics Software Qty. 1(per unit)		
	With this software it is possible to measure the wave forms for		
	voltage and current that can be found in the static inverter and		
	converter circuits.		
	Through a microprocessor based interface it is possible to		
	detect the wave forms and to send the controls to obtain trigger		
	angles through software.		

			1		
		On the screen the true RMS value, the mean value, the power			
		and other parameters are calculated in order to allow the			
		evaluation of the efficiency of the different circuits.			
		The software features a very accurate graphic presentation and			
		a user friendly interface with the end user.			
		Induction Motor Control Software Qty. 1(per unit)			
		With this software it is possible to realize the PWM, VVC,			
		trapezium shaped and block type, full and half frequency control			
		of the frequency converter and to do the acquisition of the			
		mechanical characteristics of the induction motor under testing			
		Voltages, currents and other main characteristics are calculated			
		both in numbers and as curves			
		The software features a very accurate graphic presentation and			
		a user friendly interface with the end user			
		Variable Three Phase Transformer Oty 1(per unit)			
		Power supply: three-phase from mains Rated output: 550 VA			
		Secondary phase current: 1 25 A			
		Secondary voltage: 0 to 440 V			
		The voltage is set by means of a variable autotransformer with			
		rotary knob and the output is floating			
		by means of an isolating transformer with subdivided secondary			
		winding			
		Fitted with mains lamp and motor circuit breaker			
		Battery stack Oty 1/per unit)			
		Two rechargeship batteries, maintenance free and Canacity:			
		Tachometer Oty 1(ner unit)			
		Speed ranges: 1500/3000/6000 rpm			
		Accuracy class: 1.5			
		Autout voltage: 1. $\frac{1}{1000}$ rpm			
		Single nhase supply unit Oty 1(per unit)			
		Dowor supply: single-phase from mains			
		Com aparated 2 polo mains switch 16 A			
		Value of the second sec			
	1	Automatic circuit breaker: 10 A, operated by thermal effect			

 Three phase supply unit Qty. 1(per unit) Power supply unit for three-phase connection with 4-pole cam mains switch. 25 A current operated earth leakage circuit breaker, sensitivity 30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) Automatic Scaling Current range: 0-20 lac/dc 20 - 100Hz Voltage range: 0-750 Vac/dc 20 - 100Hz Power range: 0-1000W, VAR and VA Accuracy: +/- 0.5% Resolution: 16bits Refresh rate : 0.5s Power consumption: 3 VA
Three phase supply unit Qty. 1(per unit) Power supply unit for three-phase connection with 4-pole cam mains switch. 25 A current operated earth leakage circuit breaker, sensitivity 30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Voltage range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
Power supply unit for three-phase connection with 4-pole cam mains switch. 25 A current operated earth leakage circuit breaker, sensitivity 30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
 Power supply duit for three-phase connection with 4-pole can mains switch. 25 A current operated earth leakage circuit breaker, sensitivity 30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) Automatic Scaling Current range: 0-20 lac/dc 20 - 100Hz Voltage range: 0-750 Vac/dc 20 - 100Hz Voltage range: 0-750 Vac/dc 20 - 100Hz Power range: 0-1000W, VAR and VA Accuracy: +/- 0.5% Resolution: 16bits Refresh rate: 0.5s Power consumption: 3 VA
A current operated earth leakage circuit breaker, sensitivity 30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power consumption: 3 VA
25 A current operated earth leakage circuit breaker, sensitivity 30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power consumption: 3 VA
30 mA. Triple-pole motor protection switch: 6.3 to 10 A. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
Triple-pole motor protection switch: 6.3 to 10 Å. Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Voltage range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power consumption: 3 VA
Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
L1, L2, L3, N and PE. Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Voltage range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
Digital AC/DC Multi-range Power meter Qty. 1(per unit) • Automatic Scaling • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
1(per unit) • Automatic Scaling • Current range: 0-20 lac/dc 20 - 100Hz • Voltage range: 0-750 Vac/dc 20 - 100Hz • Power range: 0-1000W, VAR and VA • Accuracy: +/- 0.5% • Resolution: 16bits • Refresh rate : 0.5s • Power supply: 90-260 Vac 50/60Hz • Power consumption: 3 VA
 Automatic Scaling Current range: 0-20 lac/dc 20 - 100Hz Voltage range: 0-750 Vac/dc 20 - 100Hz Power range: 0-1000W, VAR and VA Accuracy: +/- 0.5% Resolution: 16bits Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
 Current range: 0-20 lac/dc 20 - 100Hz Voltage range: 0-750 Vac/dc 20 - 100Hz Power range: 0-1000W, VAR and VA Accuracy: +/- 0.5% Resolution: 16bits Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
 Voltage range: 0-750 Vac/dc 20 - 100Hz Power range: 0-1000W, VAR and VA Accuracy: +/- 0.5% Resolution: 16bits Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
 Power range: 0-1000W, VAR and VA Accuracy: +/- 0.5% Resolution: 16bits Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
 Accuracy: +/- 0.5% Resolution: 16bits Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
Resolution: 16bits Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
Refresh rate : 0.5s Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
Power supply: 90-260 Vac 50/60Hz Power consumption: 3 VA
Power consumption: 3 VA
Communication: Modbus (RS485)
True rms meter Qty. 2(per unit)
Voltage:
0 1000V DC
01000VACpp
0 750VACrms
Current: 0 20 A
Continuous overload protection in all ranges.
Moving iron voltmeter Qty. 1(per unit)
Scale: 50 divisions
Range: 125-250-500 V
Range changeover switch.
Moving coil ammeter Qty. 1(per unit)
Scale: 50 divisions and Range: 2.5 A
Asynchronous squirrel cage three phase motor

	Qty. 1(per unit)		
	Squirrel cage three-phase asynchronous induction motor,		
	with three-phase stator winding and squirrel cage buried in the		
	rotor.		
	Rated power: 180 W and Voltage: $380/690 \vee \Delta/Y$		
	Slip ring three phase asynchronous motor		
	Qty. 1(per unit)		
	Induction motor with both stator and rotor three-phase windings.		
	Power: 250 W ; Voltage: 220/380 V D/Y ; Current: 1.65/0.95 A		
	D/Y		
	Excitation: 92 V, 2 A ; Frequency: 50 Hz ; Cosø: 0.66		
	Speed: 1350 rpm and Thermal protection.		
	Rheostatic rotor Qty. 1(per unit)		
	Steps operated starter for three phase induction motor with slip		
	ring rotor.		
	Step resistance value: 3 x (12-6-3-1-0) W		
	Current: 3 x 2.5 A max.		
	Shunt excitation direct current motor		
	Power: 200 W ; Voltage: 220 V ; Current: 1.5 A		
	Excitation: 200 V, 0.067 A ; Speed: 3000 rpm		
	Thermal protection.		
	Shunt excitation direct current motor Qty. 1(per unit)		
	Power: 160 W ; Voltage: 220 V ; Current: 0.73 A		
	Excitation: 220V, 0.075A ; Speed: 2850 rpm		
	Thermal protection		
	Shunt excitation direct current generator		
	Qty. 1(per unit)		
	Power: 160 W ; Voltage: 220 V ; Current: 0.73 A		
	Excitation: 220V, 0.075A ; Speed: 2850 rpm		
	Thermal protection.		
	Powder brake Qty. 1 (per unit)		
	Maximum braking torque: 12 Nm		
	Power: 400 W ; Voltage: 0 ÷ 24 V		
	Speed: 4000 rpm max. and Thermal protection.		
	Load cell Qty. 1(per unit)		
	Resistance electronic strain-gauge with 100 N range, to		
	be mounted on the brake unit for measuring the mechanical		
--	--	--	--
	be mounted on the brake unit for measuring the mechanical		
	torque.		
	Powder brake control unit Qty. 1(per unit)		
	Speed section:		
	 K2 connector for the speed transducer 		
	- Circular scale three-range instrument: 1500/3000/6000 rpm		
	- Analogue output: 1 mV/rpm		
	Torque section		
	- K connector for the torgue transducer		
	- Circular scale three-range instrument: 1.5/3/10 Nm		
	- Analogue output: 1 V/Nm		
	Brake control		
	- Output power: 0 to 12 Vdc. 0.5 A		
	- Manual external or automatic regulation		
	Thermal protection with alarm indication and Recorder pen		
	control		
	Base Oty 1(per unit)		
	Metallic structure fire varnished suitable for mounting the		
	machine or the group under test		
	Complete with enticed transducer for retating speed detection		
	complete with optical transducer for folding speed detection		
	Figwheel Qty. I(per unit)		
	Mechanical iron and copper losses at different excitations.		
	Stop clock Qty. 1(per unit)		
	Stopwatch with LCD display.		
	Measuring range: 9 h, 59 min, 59 s, 99/100 s and Battery: 1.5 V		
	Frame Qty. 2(per unit)		
	Metal frame for assembling the modules of the laboratory.		
	Connecting leads Qty. 1(per unit)		
	Set of connecting leads of different diameters and lengths.		
	Set of connecting leads of different diameters and lengths. Storage Cabinet Qty. 1(per unit)		
	Set of connecting leads of different diameters and lengths. Storage Cabinet Qty. 1(per unit) Experimental Capabilities		

	ALTERNATE CURRENT - DIRECT CURRENT CONVERSION		
	DIODES AND UNCONTROLLED RECTIFIERS		
	Single pulse rectifier, ohmic load		
	 Single pulse rectifier, ohmic-inductive load 		
	 Two-pulse rectifier, ohmic load 		
	 Two-pulse rectifier, ohmic-inductive load 		
	 Two-pulse bridge rectifier, ohmic load 		
	 Two-pulse bridge rectifier, ohmic-inductive load 		
	Three-pulse rectifier, ohmic load		
	Three-pulse rectifier, ohmic-inductive load		
	Six-nulse rectifier, ohmic load		
	• Six-pulse rectifier, ohmic inductive load		
	• Six pulse bridge rectifier, obmic lead		
	- Six pulse bridge rectifier, ohmic inductive load		
	• Six-pulse bhuge recliner, on mic-inductive load		
	SCR AND CONTROLLED RECTIFIERS		
	Single pulse converters		
	Single pulse converter ohmic load		
	Single pulse converter, inductive load		
	Single pulse converter, inductive load		
	 Single pulse converter, on mic-inductive load Single pulse converter, obmic inductive load and free 		
	• Single puise conventer, on mic-inductive load and nee-		
	• Single pulse converter, onmic-inductive load and back e.m.t.		
	Single pulse rectifier, ohmic-capacitive load		
	 Single pulse converter, ohmic-capacitive load 		
	Two-pulse midpoint converters		
	 Two-pulse midpoint converter, ohmic load 		
	 Two-pulse midpoint converter, ohmic-inductive load 		
	Multi-phase converters		
	 Three-pulse midpoint converter, ohmic load 		
	 Three-pulse midpoint converter, ohmic-inductive load 		
	 Six-pulse midpoint converter, ohmic load 		
	 Six-pulse midpoint converter, ohmic-inductive load 		
	Drainage-coil converters		

	Double three-pulse star converter, obmic load		
	Bridge converters		
	Half-controlled bridge, obmic load		
	Half-controlled bridge, ohmic load		
	Half controlled bridge, ohmic-inductive load		
	 Hall-controlled bridge, ohmic load Helf controlled bridge, ohmic inductive load 		
	• Hall-controlled bridge, on mic-inductive load		
	• Fully-controlled bridge, on the load		
	• Fully-controlled bridge, onmic-inductive load		
	• Fully-controlled bridge, onmic load and back e.m.t.		
	• Fully-controlled bridge, dc motor load		
	• Fully-controlled bridge, onmic load and supplementary dc		
	voltage		
	Fully-controlled bridge, dc generator load		
	Three-phase half-controlled bridge, ohmic load		
	Three-phase fully-controlled bridge, ohmic load		
	 Three-phase fully-controlled bridge, ohmic-inductive load 		
	THYRISTORS & CONTROLLED AC/AC CONVERTERS		
	Single-phase controllers		
	Single-phase ac controller, ohmic load		
	□Single-phase ac controller, inductive load		
	Single-phase ac controller, ohmic-inductive load		
	Single-phase ac controller, ohmic load		
	Single-phase ac controller, ohmic-inductive load		
	Half-controlled single-phase controller, ohmic load		
	Three-phase controllers		
	Fully controlled three-phase controller, star ohmic load without		
	neutral		
	Fully controlled three-phase controller, star ohmic load without		
	neutral		
	□Three-phase controller, star ohmic load without neutral		
	LIGHT DIMMER FAULT SIMULATOR		
	Double time-constant standard light dimmer circuit consisting of		
	triac, diac, two control, potentiometers, resistors and capacitors.		
	Examples of exercises:		
	Fault-free dimmer		
	DIAC shorted		

	 DIAC with high resistance 		
	 The gate of TRIAC works like a diode 		
	Control circuit break		
	 Assembly or component fault 		
	Trimmer shorted		
	 Auxiliary RC circuit not included 		
	Variable resistance R shorted		
	TRIAC shorted		
	DIRECT CURRENT to DIRECT CURRENT		
	CONVERSION(CHOPPERS)		
	□ Main SCR		
	Step-down converter with SCR with turn-off circuit. PWM		
	control.		
	Step-down converter with IGBT. PWM control.		
	Speed control of a dc motor		
	Step-down converter with MOSFET. PWM control.		
	Step-down converter with MOSFET. PFM control.		
	Step-down converter with MOSFET. TPC control.		
	Step-up converter with IGBT. PWM control.		
	Step-up converter with IGBT. TPC control.		
	Inverting converter with IGBT. PWM control.		
	SWITCHABLE POWER SUPPLY		
	Flyback converter with IGBT. PWM control.		
	Forward converter with IGBT. PWM control.		
	Asymmetric half-bridge forward converter with IGBT. PWM		
	control.		
	DIRECT CURRENT - ALTERNATE CURRENT CONVERSION		
	INVERTERS		
	Single-phase full-bridge dc chopper. PWM control.		
	Single-phase full-bridge inverter. Square-wave PWM control.		
	Single-phase full-bridge inverter. Sinusoidal PWM control.		
	FREQUENCY CONVERTERS		
	Frequency converter		
	Input controlled rectifier		

	Output power inverter		
	MOTOR DRIVES		
	DC MOTOR DRIVE		
	Single-quadrant drive with converter		
	Single-guadrant drive with converter and armature voltage		
	feedback		
	Single-guadrant drive with converter and armature voltage		
	feedback with RI compensation		
	Single-quadrant drive with converter and tacho-voltage		
	feedback		
	Single-quadrant drive with converter and tacho-voltage		
	feedback with inner current loop		
	Two-quadrant drive (I-IV) with converter		
	Two-quadrant drive (I-III) with converter		
	Two-quadrant drive (I-III) with converter and tacho-voltage		
	feedback with inner current loop		
	Four-quadrant drive with converter		
	with converter and tacho-voltage feedback with inner current		
	loop		
	Single-quadrant drive with converter		
	Single-quadrant drive with converter and tacho-voltage		
	feedback with inner current loop		
	AC SLIP-RING MOTOR DRIVE		
	Control of stator voltage with transformer		
	Control of stator voltage with controller		
	Control of stator voltage and tacho-voltage feedback		
	Rotor starter		
	Rotor pulsed resistor		
	Rotor pulsed resistor and tacho-voltage feedback		
	AU SQUIKKEL CAGE MUTUK DRIVE		
	Six-pulse MAM		
	Transacial modulation		
	I rapezoidal modulation		

	 Pulse width modulation (PWM) Voltage vector control (VVC) Motor magnetization for linear U/f characteristic Extra start magnetization IxR compensation Operation in standard converter setting Slip compensation Motor operation in star connection Brake chopper Speed control with tacho-voltage feedback 		
Total Amount			

If applicable:

Excises Duty @	%
----------------	---

Sales Tax@%	
-------------	--

Surcharge@_____%

Any other Tax _____%

Note:

1. Quotation will be submitted on CPT basis..

2. Equipment shall be supplied and installed at the premises of the NUTECH. All charges such as packing, forwarding, local freight, loading and unloading, installation and commissioning, custom clearance, orientations, on job training or any other will be part of quoted price.

3. Required price will be indicated in USD (in case quoted price are in different currencies then for sake of comparison ,these will be converted into Pak Currency at rate prevailing on opening day of commercial offer).

Firm Name:	
Signature:	
Name:	
Designation:	

Tender No
Name of the Firm
Firm Address
Date
Telephone No
E-Mail

To,

DD SCM Office NUTECH University

I-12, Main IJP Road,

Islamabad.

Dear Sir

1. I/We hereby offer to supply to the NUTECH University the stores detailed in schedule to the tender inquiry or such portion thereof as you may specify in the acceptance of tender at the price offered against the said schedule and further agree that this offer will remain valid up to 90 days after opening of commercial offer and will not be withdrawn or altered in terms of rates quoted and the conditions already stated therein or on before this date. I/ we shall be bound by a communication of acceptance to be dispatched within he prescribed time.

2. I / we have understood the instructions to Tenders and General Conditions Governing Contract available at NUTECH website and have thoroughly examined the specifications / drawing and / or patterns quoted in the schedule here to and am/are fully aware of the nature of the stores required and my/ our offer is to supply stores strictly in accordance with the requirements.

Yours Faithfully.

(Signature of Tender) (Capacity in which signing) Address Date: Signature of Witness_

Individual signing tender and / or other documents connected with a contract must be signed by principal authorized rep/ OEM rep/ Authorized partner firm rep.

CHECK LIST

(This checked list must be attached with your technical offer, duly filled and

Signed by authorized signatory)

Tender No_____

Date_____

1	a. Tender processing fee ref no	
	b. Bank	
	c. Amount	
2		
	a. EM/ Bid Bond ref no	
	b. Bank	
3	Form Annex A, A-1, B and C signed by Authorized Signatory	Yes/No
4	Offering specification of items as per It	Yes/No
5	Accounting unit/Qty as per IT	Yes/No
6	Delivery Schedule as per IT	Yes/No
7	Country of origin of store	
8	Name of OEM:	
9	Original Performa invoice (Mandatory)	Yes/No
10	Certified that there is no Deviation from IT conditions/ there is	Yes/No
	deviation from IT condition as per fol details	
11	Blacklisting certificate on stamp paper. it is certified that our firm	Yes/No
	is neither default nor black listed by any govt organization	
	directly or indirectly	

Note: Fill and/or mark Yes/No where required

Signature of Firm Auth Signatory
